Pre-course: mathematical foundations
09:00 - 10:00 Welcome
10.00 - 10:45 Introductory lecture
11.00 - 12:00 Descriptive statistics (.presentation)
12:00 - 13:00 lunch
13:00 - 13.30 Probability: Introduction and discrete distributions
13.30 - 14.30 [Exercises](session-probability/docs/prob_exr1_discrv_solutions.html}
14.30 - 15.00 break
15:00 - 15:30 Probability: continuous distributions
13.30 - 16.30 Exercises
16.30 - 17.00 Daily challenge
09:00 - 09.30 Group discussions: recap of the previous day
09:30 - 10.00 Statistical inference: Hypothesis tests using resampling
10:00 - 10.45 Exercises
10:45 - 11.15 Statistical inference: Parametric tests
11:15 - 12.00 Exercises
12:00 - 13:00 lunch
13.00 - 13.30 Statistical inference: point and interval estimates
13.30 - 14.30 Exercises
14.30 - 15.00 break
15.00 - 16.30 Non parametric tests (.presentation)
16.30 - 17.00 Daily challenge
09:00 - 09.30 Group discussions: recap of the previous day
09:30 - 10:30 Linear models: introduction .presentation
10:30 - 11.00 Exercises
11:00 - 11:30 Linear models: understanding coefficients
12:00 - 13:00 lunch
13:00 - 13:30 Linear models: model summary and assumptions
13.30 - 14.30 Exercises
14.30 - 15.00 break
15.00 - 15.30 Generalized linear models
15.30 - 16.30 Exercises
16.30 - 17.00 Daily challenge
09:00 - 09.30 Group discussions: recap of the previous day
09.30 - 12.00 Principal Component Analysis
12:00 - 13:00 lunch
13.00 - 13.30 Clustering: k-means and hierarchical clustering
13.30-14.30 Exercises
14.30 - 15.00 break
15:00 - 15.30 Supervised learning .presentation
15.30 - 16.30 Exercises
16.30 - 17.00 Daily challenge
09:00 - 09.30 Group discussions: recap of the previous day
09.30 - 12.00 Feature engineering & selection .presentation
12:00 - 13:00 lunch
13.00 - 13.30 Random Forest
13.30 - 14.30 Exercises
16.30 - 17.00 Daily challenge
14.30 - 16.00 Course wrap-up