Schedule - Omics integration and systems biology - 2024

Before the course

Prepare Pre-course materials. In order to be able to access the lab notebooks for this course you need to have access to SciLifeLab Serve. For lunching practicals please follow the instructions here.

Course schedule

- lecture

- hands-on workshop

- invited seminar

- break

Day 1
09.00 - 09.15 Introduction and contextualization (Rasool)
Resources
09.15 - 09.55 Machine Learning view of Omics integration (Nikolay)
Resources

09.55 - 10.05 Break

10.05 - 10.55 Feature Selection and Supervised Omics integration (Nikolay)
Resources

10.55 - 11.00 Break

11.00 - 12.00 Feature Selection and Supervised Omics integration (Nikolay)
Resources

12.00 - 13.00 Lunch

13.00 - 13.10 Lab recap (Nikolay)

13.10 - 14.00 Unsupervised Omics integration (Nikolay)
Resources

14.00 - 14.05 Break

14.05 - 15.20 Unsupervised Omics integration (Nikolay)
Resources

15.20 - 15.30 Lab recap (Nikolay)

15.30 - 17.00 Assisted exercises


🌟 18:00 Course Dinner at Valvet Steakhouse 🌟


Day 2

09.00 - 09.20 Review (Nikolay)

09.20 - 09.50 Single Cell Omics integration (Nikolay)
Resources

09.50 - 10.00 Break

10.00 - 11.00 Daniel Muthas - “Deriving actionable insight from omics data – an industry perspective”

11.00 - 11.15 Break

11.15 - 12.00 Single cell omics integration (Nikolay)
Resources

12.00 - 13.00 Lunch

13.00 - 13.45 Single cell omics integration (Nikolay)
Resources

13.45 - 13.55 Lab recap (Nikolay)

13.55 - 14.05 Break

14.05 - 14.45 Deep Learning for Omics integration (Nikolay)
Resources

14.45 - 15.00 Break

15.00 - 16.15 Deep Learning for Omics integration (Nikolay)
Resources

16.15 - 16.30 Lab recap (Nikolay)

16.30 - 17.00 Assisted exercises



Day 3
09.00 - 10.00 Introduction to biological network analysis (Sergiu)
Resources

10.00 - 10.15 Break

10.15 - 11.00 Introduction to biological network analysis (Sergiu)
Resources

11.00 - 11.30 Review (Sergiu)

12.00 - 13.00 Lunch

13.00 - 14.00 Introduction to biological network analysis (continued) (Sergiu)
Resources

14.00 - 14.15 Break

14.15 - 16.15 Machine learning on Graphs (Sergiu)
Resources
16.15 - 16.30 Lab recap (Sergiu)
Resources

16.30 - 17.00 Assisted exercises



Day 4
09.00 - 10.00 Genome-scale metabolic models for integration (Rasool)
Resources

10.00 - 10.15 Break

10.15 - 11.30 Genome-scale metabolic models for integration (Rasool)
Resources
  • Launch Lab GEMs on Scilifelab Serve, use Jupyter app.
  • Docker image: docker pull rasoolsnbis/omicsint_h24:session_gems_amd_v.h24.a2b336c

11.30 - 11.45 Lab recap (Rasool)

12.00 - 13.00 Lunch

13.00 - 14.00 Johan Gustafsson - “Generation of context-specific genome-scale metabolic models using single-cell RNA-Seq data”

14.00 - 14.15 Break

14.15 - 14.45 Non-negative matrix factorization (Sergiu)
Resources
14.45 - 15.15 Non-negative matrix factorization (Sergiu)
Resources

15.15 - 15.30 Break

15.30 - 16.00 Similarity network fusion (Sergiu)
Resources
16.00 - 16.30 Similarity network fusion (Sergiu)
Resources

16.30 - 16.45 Lab recap (Sergiu)



Day 5
09.00 - 09.45 Gene set analysis and reporter features (Rasool)
Resources

09.55 - 10.00 Break

10.00 - 11.00 Mats Nilsson - “Targeted in situ sequencing for characterization of the genetic, molecular and cellular diversity of healthy and disease tissues”

11.00 - 11.45 Gene set analysis and reporter features (Rasool)
Resources

11.45 - 12.00 Lab recap (Rasool)

12.00 - 13.10 Lunch

13.00 - 14.00 Discussions and course end (Rasool)
Resources



Teachers: - Nikolay Oskolkov - Rasool Saghaleyni - Sergiu Netotea

Teaching assistants: - Yuan Li - Jennifer Fransson - Stefan Ebmeyer

Back to Homepage