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Background
X oA
transcription l _ _
Metabolism provides the
“— MRNA energy and building blocks
translation 1 necessary to sustain life.

W protein

metabolism /\
O © metabolites
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DA DNA ~20,000 genes
l (protein-coding)

l

W protein

/_\ >100,000 metabolites
O © metabolites

diversity
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ND<D Background

MO DNA stable

~_~- MRNA relatively stable

W protein stable

. ® . ranges from stable
metabolites very unstable
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Background

@ —O

We can generally measure
metabolite concentrations

A A ...but what is often important is
the flow or flux of metabolites
through the reactions.

— —
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& Background
Assume that we want to know the I
production rate of B, but can only A —
measure the concentration of A flux = vy
— — <
dt % Calculate v,
= \
dB g °/ vi = production rate of B
=7V 3
1
dt

Time
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The Stoichiometric Matrix

G6P |
lrl Reactions
rl
F6P sn G6P -1
r3 ( ) 2 2 FeP 1
FBP S FBP 0
S
r4 3 DHAP 0
DHAP G3P S s o
S
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The Stoichiometric Matrix

G6P |
lrl Reactions
1 r2
F6P s G6P -1 0
f3( )rz 2 FeP 1 -1
FBP S FBP 0 1
@
r4 % DHAP 0 O
DHAP G3P S a3 0 0
S
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2D The Stoichiometric Matrix
NATIONAL BIOVIN’FOR\\A/—\"I’ICVS
INFRASTRUCTURE SWEDEN

G6P _
lrl Reactions
rl r2 r3 r4 15
F6P n CG6P -1 0 0 0 O
)
rS( )rZ = F6P 1 -1 1 0 O
FBP S FBP 0 1 -1 -1 0
©
r4 $ DHAP 0 0 0 1 -1
DHAUBP = G3 0 0 0 1 1
rS
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Genome-scale model (GEM)

Chemical formula

Charge

InChl code

Other external IDs Other IDs
Name

KEGGID Compartment Name Symbol r1l r2 r3 r4 r5 Symbol

C00668 cytosol [C] glucose 6-phosphate  G6P -1 0 O O O

C00085 cytosol fructose 6-phosphate FeP 1 -1 1 0 O

C00354 cytosol
C00111 cytosol
C00118 cytosol

fructose-1,6-bisphosphate FBP 0 1 -1 -1 0
dihydroxyacetone phosphate DHAP 0 O 0 1 -1
O 0 0 1 1

glyceraldehyde 3-phosphate G3P

’ﬂ: OISB - 2024




& Genome-scale model (GEM)
INFRASTRUCTORE SWEDEN | .
S Genes (symbol) Proteins (UniProt ID)
Transcript IDs
GPI P06744
GO Terms
n/a Orthologs
FBP1, FBP2 P09467, 000757
ALDOA, ALDOB, ALDOC  P04075, P05062, P09972
TPI1 P60174
i
Symbol 1 r2 r3 r4 r5
cep -1 0 0 0 O Reactions are linked to genes that encode the
P 1 -1 1 0 O enzymes that catalyze the reaction.
FBP 0 1 -1 -1 0
DHAP 0 O 0 1 -1 These associations are often called “gene-protein
G3P 0 0 0 1 1 rules” (GPR rules)
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GPR Rules

=
enzyme complex GPR Rules enable more
accurate simulation of gene
é Inactivation/knock-out
. ~
Isozymes
|
ElorE2 E3a and E3b
E2 none
% q El+ E2 rA inactive
\ / E3a rB inactive
C C C C E3b rB inactive
A I'g E3a+E3b  rBinactive
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& Flux Balance Analysis (FBA)
lin
> G6P FBA _seeks to calculate the

lrl reaction fluxes (v) of a network
F6P The calculation is based on the

3 ( \ D conservation of mass: it cannot

I be created or destroyed

FBP

r4 r
o A o 2y X

\-/ dt — vproduce — VUconsume

S

‘@ 0ISB-2024



& Flux Balance Analysis (FBA)
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L r2 r3 rd 5 ry fou AN

I’in VvV
—p G6P G6P (-1 0 0 0 0 1 O0) Vl  dG6P/dt )
2
lrl F6P |1 -1 1 0 0 0 O Vs dE6P/dt
FBP| 0 1 -1 -1 0 0 O |X|V, |=| dFBP/t
F6P DHAP | 0 0 0 1 -1 0 O Vs dDHAP/dt
- Vin dG3P/dt
l Vout
. J
FBP d[G6P]

Ir4 - — =-v  +v_
DHAP G3P
" AG3P)
= V4 + Vs — Vgt

5 dt
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& Flux Balance Analysis (FBA)
lin " . ]
—_— 6P A key assumption to FBA is steady state:

. metabolite concentrations are constant with
lr respect to time!

< )- X v — v =0
- dt produce consume
*M lout
DHAP G3P _ | |
This assumption allows us to ignore
\_/ enzyme kinetics, thus eliminating

S many unknown parameters
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& Flux Balance Analysis (FBA)

L r2 3 r4 15 rin froww N

G6P -1 0 0 0 0 1 O0) zz Cdcep/dt) [0

F6P |11 -1 12 0 0 0 O Va dF6P/dt 0

FBP| 0 1 -1 -1 0 0 O x|V, |=| dFBP/dt |=|0

DHAP | 0 0 0 1 -1 0 O Vs dDHAP/dt 0

GsP|{0 0 0 1 1 0 -1, \;’ dG3P/t || o
out
Sy

Now we can solve it as a system of linear equations:

S'v=0

So we can calculate / estimate fluxes.
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4 Flux Balance Analysis (FBA)

We can further constrain the solution space by
limiting reaction fluxes based on their reversibility:

Irreversible
reactions . b Q O<v<ub

Reversible
. —p b <v<ub
reactions ‘ Q
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Flux Balance Analysis (FBA)

Since the problem is still under-defined, FBA uses linear optimization
to identify a solution that maximizes (or minimizes) some objective

V3 V3 V3
A Constraints A Optimization A
1)Sv=0 maximize Z
2) a;< vi< b,

ﬁ

» V4

Allowable
solution space

Unconstrained
solution space

Vo Vo
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V52>  Flux Balance Analysis (FBA)

r.

—> G6P

l r1 Ibiomass
biomass
F6P
3 2
( ) Often, the optimization objective is to
FBP maximize flux through an artificial
(4 ' “biomass” reaction, or to maximize
out :
DHARE * > G3pP - production of ATP.
5
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S Genome-scale metabolic models (GEMs) for data

>

NATIONAL BIOVIVﬂNthCW)R\\;ﬂ/-\TICyS I n teg ratl O n

INFRASTRUCTURE SWEDEN

. media tabolomi
mutations Protelns\ composition metabolomics
k”OCk'OUtSE proteomics \ /
Genes Metabolites
/ &
Transcripts o,
' < metabolite
RNA-éq, éoReaCtl b nSA i exchange rates
microarray {y k@y
% Fluxes
Subsystems /
[context] growth rates
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Can GEMs serve as a scaffold for
Integrating & studying diverse types of
(omics) data?
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S Genome-scale metabolic models (GEMs) for data

>

NATIONAL BIOVIVﬂNthCW)R\\;ﬂ/-\TICyS I n teg ratl O n

INFRASTRUCTURE SWEDEN

. media tabolomi
mutations Protelns\ composition metabolomics
k”OCk'OUtSE proteomics \ /
Genes Metabolites
/ &
Transcripts o,
' < metabolite
RNA-éq, éoReaCtl b nSA i exchange rates
microarray {y k@y
% Fluxes
Subsystems /
[context] growth rates

@ OISB - 2024



NB:S

Metabolism and macromolecular
NFRASTRUCTURE SWEDEN expression (M E) model

J Lerman et al, Nat. Commun. 2012

dilution
VmRNA dilution = amax VmRNA degradation

N\j— __TmRNA

NTPs © Transcription mRNA MRNA O max= n
mRBNA o mRNA d dati
degradation dilution iR NMPs
O +=—— — (7
mRNA
BlaES degradation O
NMPs VmRNA degradation 2 bmax Vransiation
N\.g- eLe 7
mRNA ) 7 el b=
Complle)* Complex Translation & il Kiranstation TmRNA
formation dilution : D

>0

Complex
dilution /]
VCompIex dilution = CmaxVCompIex usage
1
(— & C =
—QO — O Protein  Compiex e
Complex use complex use

& ey m o ".
GRE, 3 el SWEDEN
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& GEM contextualization

tINIT + omics data

R. Agren, et al. PLoS Comput Biol 2012 (transcriptomics,
proteomics, and/or I
metabolomics)

Generic model
(not representative of any
real cell or tissue type)

‘@ OISB-2024



b GEM contextualization

ORM INIT (Integrative Network Inference for Tissues)
R. Agren, et al. PLoS Comput Biol 2012 max (Z Wiyi+ ij)
ieR jeM
» Uses proteomic, transcriptomic, and/or metabolomic i
data '=
- An optimization is performed to |vi| <1000y;

= maximize the number of high-confidence (high |vi|+1000(1 —y;) =&

expression) reactions that are “on” .. :
P ) v; >0,ieirreversible rxns

= minimize the number of low-confidence (low-expression)

reactions that are “on” (" b;<1000x;
« All reactions in the final model must be able to carry < bi+1000(1—x;)>e¢
flux
« Metabolites are allowed to accumulate

during the optimization x;=1, jepresent

= An additional term in the algorithm maximizes the vi-%j€{0,1}
number of “present” metabolites that can be
produced _
. . . - - 11 ” Slgnalivf
= Distinction of which metabolites should be “present” are wij=35log| ——
based on literature or data (e.g., metabolomics) Average;

‘@ OISB-2024




b GEM contextualization

R. Agren, et al. Mol Syst Biol 2014

Identical formulation as INIT, with added steps

= [INIT does not necessarily yield simulation-ready
models

 User defines a series of metabolic tasks that the
model must perform

» Reactions that are required for these tasks are
identified

= A requirement that these reactions are active is
included as an additional constraint in the optimization

« Afollow-up evaluation of each task is performed

= |f a task fails, a gap-filling algorithm is used to enable
task completion

‘@ 0ISB-2024

tINIT1 (Task-driven Integrative Network Inference for Tissues)

Metabolic Tasks

Rephosphorylation of nucleoside triphosphates
Aerobic rephosphorylation of ATP from glucose
Aerobic rephosphorylation of GTP
Aerobic rephosphorylation of CTP
Aerobic rephosphorylation of UTP

De novo synthesis of nucleotides
ATP de novo synthesis
CTP de novo synthesis
GTP de novo synthesis
UTP de novo synthesis
dATP de novo synthesis
dCTP de novo synthesis
dGTP de novo synthesis
dTTP de novo synthesis

Uptake of essential amino acids
Histidine uptake
Isoleucine uptake
Leucine uptake
Lysine uptake
Methionine uptake
Phenylalanine uptake
Threonine uptake
Tryptophan uptake
Valine uptake

De novo synthesis of key intermediates
Glycerate 3-phosphate de novo synthesis
Mitochondrial acetyl-CoA de novo synthesis
Mitochondrial AKG de novo synthesis
Erythrose 4-phosphate de novo synthesis
Fructose 6-phosphate de novo synthesis




GEM contextualization

wrovasoncorvarcs — LINITL (Task-driven Integrative Network Inference for Tissues)

@ Isozymes 6

E1 or E2> rxn score = max(E1, E2) ™~
E3a and E3b Enzyme complex

% / rxn score = max(E3a, E3b) % /

O O
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GEM contextualization

wronasoncorvancs LINITZ2 (Task-driven Integrative Network Inference for Tissues)

e \ B e \
E1or E2 rxn score = max(El, E2)
&

|

Complexes and
ISozymes scored
differently

E3aand E3b l

%/ rxn score = min(E3a, E3b) %/

Complexes remain or
are removed as a group

O O

‘@ 0ISB-2024
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Enzyme-constrained GEMs

» Should any reaction have
bounds up to +c0?

« Should these 2 pathways have
reactions with the same
bounds?

Relationship between enzyme and reaction:

Flux of reaction —— v < kcat[E] «—— Concentration of enzyme
(from FBA) (from absolute proteomics)
Turnover number

(from databases)

However: No simple implementation for connecting proteomics to GEMs...

@ OISB-2024




? Enzyme- constramed GEMs

NATIONAL B IOIRFOP\/ AT ICS
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1/Kcat
proteomlc data
kinetic data (kcat values)
%Y BRENDA ||
The Comprehensive Enzyme Information System
1/Kcat
1/Kcat

O O
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Total
Protein O Q

Pool

kinetic data (kcat values)

2 BRENDA ||

The Comprehensive Enzyme Information System

Even if proteomic data is G

unavailable, the total protein
usage can be constrained O Q
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B. Sanchez, et al Mol Syst Biol 2017

Applications:

« Improving predictions

« Integrating proteomics data
into GEMs

25 . ‘ .
™ O2 consumption (WT strain)
¢ 002 production (WT strain)
o 02 consumption (ndi1a)
20 o CO2 production (ndifa)

Flux [mmol/gDWh]

0.1 0.15 0:2 0.25 0:3 0.&35 0.4
Dilution rate [1/h]

Enzyme-constrained GEMs

4 Metabolic\
model (GEM)

W wiaV,
/Enzyme data\
% BRENDA

4l $« paxdb’”’ )

4 Proteomics\
(optional)

swgrgt@- @

/ GECkﬂﬂ

enhancing Genome-scale models with Enzyme Constraints, using Kinetics and Omics

—

Enzyme usage: e

[mmol/gDW]
e < [E]

Flux: v [mmol/gDWh]

A+ l/kcatE—)B

New stoichiometry:

¥E I(cat ' [E]

Mass balance for E:

4 Enzyme- N
constrained
mpdel
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Li F, et al Nat Cat 2022

Predicting K., for ecGEM parameterization

e Experimentally measured k_,; data are sparse and noisy

* Deep learning approach (DLKcat) for high-
throughput k., prediction for metabolic enzymes

* They designed a Bayesian pipeline to parameterize enzyme-
constrained genome-scale metabolic models from
predicted k. values

Kcat prediction

o

r=0.88
- Pvalue=0
| N=16,838

log, ,lpredicted k_,, value (s™)]

Density (a.u.) 0.1

0.2

0.3

log,,[experimental k_,, value

cat

-8 6 4-2 0 2 4 6 8

(s

o o o =
EN o © ©O

o
N

Simulated growth rate (h™)

o |

Growth rate prediction

Species = 53 o
N =256 /.
. Mean error = 0.01 Cg& /

o

02 04 06 08 1.0

Experimental growth rate (h™

BRENDA

Deep learning model: DLKcat

16,838 entries with
protein sequence,
substrate SMILES,

k

cat

SABIO-RK
\ 4
® Substrate
p
S K.t l\.a Enzyme
[

CC(=0)C([0-])=O MLRSLLQS...VDISQLPPG

( GNN ) ( CNN
® O ® 00
Substrate embeddings Protein embeddings
- _/
Y‘
000 00000
Neural attention
‘ mechanism
Output K. Values
\ 4
Deep learning model Ko = f(X)



X Predicting K., for ecGEM parameterization

k,,

£
NATIONAL BIOINFORMATICS
INFRASTRUCTURE SWEDEN -
e ovvE ""AB{_CI'-TE @ € Explore GEM v GofEnzymes Documentation  About

Li F, et al Nucleic Acids Res, 2023

* Enzyme performance can be quantitatively described by | g /
parameters such as enzyme turnover number kcat and E— PN
Michaelis constant Ky C R Yoo

* The ratio kcat/Km is a measure of enzyme efficiency, 2 — °
combining both the affinity for the substrate and the rate of r— =
catalysis. It is often used as a benchmark for comparing the p
performance of different enzymes.

* GotEnzymes provides a comprehensive database with . | 2
enzyme parameter predictions available Experimental A
at https://metabolicatlas.org/gotenzymes. measurement / DLKcat

pregligtiyimics data / whole
_"  protein constrain > More accurate
v— V., au[S] Vmax=Keat[Eltotal Kcat[E]total[S] predictions
K_+[S] Km+[S]
: : . Experimental measurement
Michaelis-Menten equation \ P J

/ GotEnzymes prediction


https://metabolicatlas.org/gotenzymes
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GEM

Extending the coverage of GEMs: secGEM

Biomass

?

[

_>M
_’M

_>M

.

|

metabolism

Humanl

Template reactions

Saghaleyni, et al Cell Rep, 2022

= OISB -2024

/

Gap Filling the
model for

production of
added
reactions

N -se: [

Extract
information
from Protein

Generating
specific

reactions for
the protein

Secreto
proteins

Add list of
reactions for

the selected
protein to
model

sec-GEM

-

"M A

Protein
secretion
pathway

.

metabolism —

>  Biomass

L, Secre_tory
proteins

Sec-GEM

N\

input a

secretory
protein

Specific
Information
Matrix

P, 340

Biomass

H Metabolism h—

2

9 1 0

Metabolites
Uptake

PSIM E - Protein Specific Information Matrix
L NG OG DSB TMD

%

&
&
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sec-GEM

Extending the coverage of GEMs: secGEM

-

metabolism
> M ! A

> M

> M Protein
secretion
pathway

\_

N

—> Biomass

L, Secre_tory
proteins
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Integrating Single cell transcriptomics into GEMs
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Johan Gustafsson

Single-cell omics analysis with
genome-scale metabolic
modeling

J Gustafsson. Et al
Current Opinion in
Biotechnology, 2024

Generation and analysis of
context-specific genome-scale
metabolic models derived from
single-cell RNA-Seq data

J Gustafsson. Et al
PNAS, 2023

OISB — 2024

Postdoctoral Fellow, Broad institute, USA

Talk Title: Generation of context-specific genome-scale metabolic models using single-cell RNA-Seq
data

Time: October 17, 13:00 — 14:15 CET online on zoom
Link to Talk: BIG talk event, Link, pass:spd996

Description of the Talk:

The metabolic networks in cells vary across tissues and cell types, and to accurately model the
metabolism of cells, the full generic metabolic network defined in the genome needs to be reduced to a
context-specific network representing the network expressed specifically in the cells of interest. Single-
cell RNA-Seq promises to provide the information needed for such a reduction, but noise in the form of
data sparsity is a challenge. Here, we present methods to handle data sparsity and estimate the
uncertainty of modeling results.

About the Speaker:

Johan is an expert in modeling cancer metabolism and analyzing single-cell RNA/DNA sequencing data,
aiming to uncover vulnerabilities in cancer. With a background in both computer science and
biochemistry, Johan has completed a PhD in metabolic modeling at Chalmers University of Technology
and now works as a postdoc in the Getz lab at the Broad Institute, focusing on CLL/Richter’s syndrome
and hypoxia in solid tumors.
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2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

2019
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Recon EHMN
HMR
Recon2 —1
HMR2
L }
iHsa

Recon3D

Human1

Human GEMSs

Genome-scale models of human metabolism

Began with Reconl and EHMN (Edinburgh human
metabolic network)

Followed by the first generation of the Human
Metabolic Reaction (HMR) model

A few years later new versions Recon2 and HMR2 were
published

Then Recon3D model improved the annotations.

The most recent human GEM is Human 1.
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Reconl
N.C. Duarte, et al. PNAS 2007

* Included intracellular compartments
and exchange

» References and confidence scores were
provided for each model component

« Highlighted the large differences in
characterization of each pathway
= Category |, Il, and Il

* Integrated transcriptomic data from gastric
bypass patients with the model

= Gene fold-changes before/after surgery

» Mapped to network and visually identified
regions of coordinated expression change

Human GEMSs

0 100
I
Keratan Sulfate Biosynthesis

Fatty Acid Activation C ateg Ory l

Fatty Acid Elongation

Fatty Acid Oxidation, Peroxisome

Purine Catabolism

IMP Biosynthesis

Nucleic Acid Degradation

Pyrimidine Biosynthesis

Oxidative Phosphorytation

CoA Biosynthesis

Methionine Metabolism

Hyaluronan Metabolism

Carnitine Shuttle

Keratan Sulfate Degradation

Fatty Acid Oxidation
Chondroitin/Heparan Sulfate Biosynthesis
Folate Metabolism

Triacylglycerol Synthesis

Steroid Metabolism

Heparan Sulfate Degradation
Tetrahydrobiopterin Metabolism
Colesterol Metabolism
GPl-anchor Blosynthesis
Vitamin D Metabolism
Eicosanoid Metabolism

Blood Group Biosynthesis

Alanine and Asparate Biosynthesis !
ROS Detoxification &

Chondroitin Sulfate Degradation
Histidine Metabolism

Glutathione Metabolism
Sphingolipid Metabolism

Tyrosine Metabolism

Bile Acid Biosynthesis
Cytochrome P450 Metabolism
Nucleotides
Vitamin B6 Metabolism

Glycine, Serine, and Threonine

Fatty Acid Metabolism

Glutamate Metabolism

NAD Metabolism

Valine, Leucine, and Isoleucine Metabolism
Glycerophospholipid Metabolism &

Starch and Sucrose Metabolism *

3210

confidence score

Propanoate Metabolism F

Glyoxylate and Dicarboxylate Metabolism
Biotin Metabolism

Pyrimidine Catabolism

Lysine Metabolism

Urea Cycle/Amino Group

Inositol Phosphate Metabolism

Transport, Mitochondrial

Thiamine Metabolism

Taurine and Hypotaurine

Aminosugar Metabolism

Transport, Extracellular 8

Pyruvate Metabolism §

Heme Biosynthesis

Miscellaneous B

Tryptophan Metabolism

beta-Alanine Metabolims

Selencamino Acid Metabolism | §

Limonene and Pinene Degradation
Ascorbate and Aldarate Metabolism

Arginine and Proline Metabolism

Pentose and Glucuronate Interconversions
Ubiquinone Biosynthesis i

Cysteine Metabolism

Vitamin A Metabolism g

C5-Branched Dibasic Amino Acid Metabolism
Phenylalanine Metabolism

Transport, Nuclear

Transport, Peroxisomal

Transport, Endoplasmic Reticular

Transport, Lysosomal

Transport, Golgl Apparatus

Nucleotide Sugar Metabolism

Alkaloid Biosynthesis I ®

Galactose Metabolism &
Pentose Phosphate Pathway
Fructose and Mannose Metabolism
Glycolysis/Gluconeogenesis
N-Glycan Degradation
Citric Acid Cycle
O-Glycan Biosynthesis
N-Glycan Biosynthesis

-
-
.
-
-
.

3210

confidence score
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A Human GEMSs
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HMR (Human Metabolic Reaction) model

R. Agren et al. PLoS Comput Biol 2012
—

A. Mardinoglu, et al. Mol Syst Biol 2013 «—— [ Recont |
« Initially formulated as more of a database ——
than a mOdel | / B:BMH database \ Human rzetabolic reaction (HMR) database
* Merged Reconl and EHMN with other j @D
databases (HumanCyc and KEGG) Recont e ‘z%
S—@— Ty ===
« Focused on metabolites and reactions with 163 719 1175 R
standard identifiers (KEGG, InChl, etc.) - %_ ¥ &
- HMR was integrated with healthy tissue and on &g B<_ 7 e
cancer proteomics and transcriptomics to 50 E,< D -
generate tissue- and cancer-specific models 9 HepatoNet 1 ) i

= Developed the INIT algorithm to perform the
omics data integration

‘@ OISB-2024



=N Human GEMs
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Recon?2 Recon 1
|. Thiele, et al. Nat Biotechnol 2013 Jambores mestings
« Aimed to develop a consensus reconstruction, combining a few previous $! —
models Recon 12
» Used the model to predict biomarkers for inborn errors of metabolism (IEM) M —
» Constrained reactions catalyzed by affected enzymes and identified significantly v ! eealed

Recon 1.4

altered exchange reaction fluxes

Consistency ‘ ' Debugging,

» Recon2 outperformed Reconl testing validation
» Generated 65 cell type-specific GEMs using HPA expression data (with Recon 15
i M AT) Ac-FAO module ‘
= Compared structures (reaction content) | gkcey |
. ‘ Transport, absorption 1
= 25% of the models could generate biomass ~
Recon 1 In vivo Recon 2 Tnvivo ConSitsetz{i‘rf; \ ’ \[/);it:ilgg:g'
§ Up Down Accuracy = 63% % Up Down Accuracy = 71‘;/0 econ2
2 Up o4 ] P =0.054 <[Up 66 5 P=7.9*10
Down |16 5 Down |18 10
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Human GEMSs

HMR 2.0 database

HMR2 (Human Metabolic Reaction) model
A. Mardinoglu, et al. Nat Commun 2014

Literature based GEMs
Generic human GEMs

|\
J

* Incorporated extensive lipid metabolism > iHumani1512
« Improved reaction-gene associations > Recon 1
= However, all genes are still assumed to » Edinburgh model (EHMN)
encode isozymes for their associated reactions Cell type specific GEM
« HMDB, Lipid Map, KEGG, and ChEBI > iAdipocytes1809
identifiers were assigned to metabolites » HepatoNET 1

. KEGQ IDs and EC numbers were assigned to Pathway / process databases
reactions

@ @ HumANCYC
A member of the bloCyc
database collection

ogQPgo =" 4
Cogo0

.

» Also included genes and reactions in Recon2

REACTOME

1?*: OISB - 2024



Recon3D
E. Brunk, et al. Nat Biotechnol 2018

« Expanded Recon2 by incorporating other
models/networks

= e.g., HMR2 and drug metabolism
» Curated and fixed many errors present in Recon2
« Added 3D metabolite and protein structure data

» A separate “database version” and “model version” exist

= The database version contains all the reactions and
information, but is not properly balanced.

= The model version is suitable for simulation
purposes (e.g., FBA).

@ OISB - 2024

Human GEMSs

Additions -

Mapping multi-
metabolomicsdata sets

N
Debuggin
\ 4 Debueging

———  Organ-specific reactions

¥ N\
‘Debugging
NN

mamm— Transport module

¥

\v o
- Debugging

~——— Host-microbe interactions

¥ N\
‘Debuggin
\___nDebueeing

Diet-specific additions
and lipoproteins

4 Debugging
SN

— Bile acid reactions

Vs

Debugging
SN

Dopamineand
sphingolipid reactions
—

\Debugging
R,

e HMR 2.0

%
Debuggin
a8 gging

—

\

— Drug module

Recon 2
|

A= = e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

Recon 3D

Refinements

Deletion of duplicate
metabolites

Modification of GPR
associations

Metabolite formulae
adjustment, to pH 7.2

Mass and charge
balancing

Leak test

Stoichiometricand flux
consistency check

Function test

Debugging and curation
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Human 1

Human GEMSs

Robinson J, et al. Science Signalling, 2021

 Extensive curation

Full stoichiometric consistency Genes Metabolites Mapping to database IDs
= Balance reactions by mass & charge Metabolites,
« Conserve mass of all metabolites p :
GR rules Reactions
¥ O\ ¥ \ UniProt
@] } Q O NCBI MetaCyc
O O o Update gene IDs Map to external Ensembl KEGG
(database) IDs
memete HPA MtaNetX BIGG
Reactions Metabolites Add protein and
Total Total transcript IDs Balance Update met
15000 mBalanced 5000 | mConsistent reaction formulas & Reactome
equations charges ChEBI HMDB
12,000 4000
9000 3000 Updated
6000 2000 genes u"d"l. mted m‘;gﬂms Ongoing transparent curation
3000 1000 Humani
0 0 (v1.0.0) Track changes
FEER Y 30ET Update gene- name: ammonia
=T g B g SI2%8 E reaction rules m Recon3D o= -formula: NH4
I 6:8; 5 I §§ ] c E -charge: +1
8= €8z & = T e——
Add enzyme 3 e EEME- lamr\:;;a
. = complex data « Ma T +formula:
p to external IDs 5 +charge: 0
Enzyme complex information M o mocel D 2| G u1.0.1mm
. e k=l - —_—
Generate protein- and ?:nqg":%gue model 2 g Update maps
g o
K + ‘ transcript-reaction rules  Integrate models I o
* Repeat curation with al 21 g
Enzyme integrated model E -
subunits |—I Updated E g
GTPR rules =
Complexes -
CORUM 01181 Datab. = Ongoing updates v1.0.2
211 0 0 1 alabases =2 & dissemination
Bzyine } 2loo0o 11 Change logs &
= n ge logs
complex § 1000 L) rr. X ) +/- transparency 1.1.0 =
database Active mainenance P il
0110 Other models ﬁ}:‘ and improvement a Userfeedback
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metabolic

ATLAS

Compartments

Subsystems

Compartment: Endoplasmic
Reticulum

B8 GEM Browser

Human-GEM GEM Browser

Map Viewer

Explore

GEM v

3D Viewer

5 2 1 - S
- > -
GEM Browser DIO2 Interaction Partners
NADP+ NADPH
Human-GEM 1D HMR_6827 ° ° 3-monoiodo-L-thyronine

Equation

Reversible

Quantitative

Gene rule

EC

Compartment(s)

Subsystem(s)

1e + iodide + NADP+ ¢ NADPH + triic

- Upper bound: 1000

¢ DIO1

sdothyronine

sine and tryptophan biosynthes

s

thyroxine
3,3-dilodo-L-thyronine
TR NADPH
o
trilodothyronine D’E 3 '°d.‘°e
° Di02
reverse tr rgdmymnme D.IO! NAgP.
| |

3-monoiodo-L-thyronine 3,3-diiogo-L-thyronine
e X Lt

& triiodothyronine
° 3_5vcw,000.L-lh)mmnq
3,5-dliodo-L-thyronine
o thyroxine
reverse trilodthyronine
°




NB;S GEM-based comparison of transcriptomes

NATIONAL BIOINFORMATICS
INFRASTRUCTURE SWEDEN

# GTEXPortal
THE CANCER GENOME ATLAS

National Cancer Institute
National Human Genome Research Institute

# Home Bl Datasets~ X Expressionv & QTLs & Bro 8 Sample Data~ B Do

Tissue Sampling Sites

This page provides a visual representation of the biospecimen source sites (BSSs) for the
collection of tissue from postmortem/organ procurement cases for the Genotype-Tissue
Expression (GTEX) project.

The full documentation on tissue collection procedures can be found on the GTEx Tissue
Harvesting Work Instruction [

Cases by Primary Site

Cortex | Frontal Cortex (BA9)
Anterior cingulate cortex (BA24)
Caudate (basal ganglia)

Putamen (basal ganglia)

Nucleus accumbens (basal ganglia)

Hippocampus

Cerebellum / Cerebellar Hemisphere
Substantia nigra

Pit

Spinal cord (cervical c-1)

Minor Salivary Gland
Thyroid Artery - Aorta
Lung Heart - Atrial Appendage
Breast - Mammary Tissue Atery - Coronary
Panereen Heart - Left Ventricie
Arenal (e Esophagus - Mucosa
Liver
Kidney - Cortex & Esophagus - Muscularis
Kidney - Medulla Esophagus - Gastroesophageal Junction
Adipose - Visceral (Omantum) Spleen
Small Intestine - Terminal lleum Stomach
Fallopian Tube Colon - Transverse
Ovary Colon - Sigmoid
Uterus Bladder
Skin - Not Sun Exposed (Suprapubic) (Y Prostate
Cervix - Endocervix {‘ Testis
Primary Site Disease Type Gender Vital Status o Eﬁ:,:?’: Whole Blood
Skin - Sun Exposed (Lower leg) ] Cells - EBV-transformed lymphocytes
Calls - Cuttured fibroblasts \ Aty TIaT
Adipose - Subcutaneous > 1 Nerve - Tibial
Muscle - Skeletal }
[
|
ot try My K vt i GTE Purtl s

el?ﬁ:
SWEDEN




= , GEM-based comparison of transcriptomes

G
NATIONAL BIOINFORMATICS

INFRASTRUCTURESWEDEN— Objective: To investigate healthy and tumor tissue transcriptomic
differences in the context of metabolism  ggm type

Data source Generic Tissue/Cancer-specific

tissue/ . aggregate of multiple
patients :
cancer _ tissue or cancer types

"“ﬁ 'I"ﬂ' sl
o m SO C del

® i R o o
I | \ J 7

~
RNA-Seq data Human-GEM tINIT
* TCGA

= 33 tumor types

» 23 paired-normal tissue types
* GTEX

» 30 healthy tissue types

‘@ OISB-2024
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Comparison of model structures

Reaction Lung Lu_ng Lung Brain Br_ain
Tumor Paired | Healthy | Tumor Paired Model
1 1 0 1 1 | comains
rxn2 0 1 1 1 1
rxn3 0 0 0 0 0
rxn4 0 1 0 1 0 — rl\::?sdseilng
rxn5 1 1 0 1 1 reaction
rxn6 1 0 0 1 0
rxn7 0 0 1 1 0
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Comparison of model structures

subsystem | Reacion | Lond | Lurg | Luna [ Sran [ gren
TCA cycle rxnl 1 0 1 1 1
TCA cycle rxn2 0 1 1 1 1
Glycolysis rxn3 0 0 0 0 0
TCA cycle rxn4 0 1 0 1 0
ey acd | s 1 1 0 1 1
camine | e 1 0 0 1 0
Glycolysis rxn7 0 0 1 1 0

@ 0ISB - 2024
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GEM-based comparison of transcriptomes

tSNE of model reaction content matrix

500 —
CHOL-NT ¢
® LIHC-NT
liver-GTEx @
* LIHC-TP
400 - * CHOL-TP
300 -
DLBC-TP blood-GTEx
SARC-TP
KICH-TP
200 - muscle-GTEx bload veassl-GTEx
o stomach-GTEx MESO-TP
# PCPG-TP ESCA-NT BRCA-TP
uvm-TP " THYM-TP LAML-TB LUAD-TP
w SKEHETF THCA-TP . spleen-GTEx-  CESC-NT | jap NT
2 100+
& THCA-NT TE 5 LUSC-NT
= pituitary-GTEx © .'Untg-g B, UCECNT
thyroig:r(‘ETEx _~1allopian tube- ___ BRCANT
testis- —_— -
g\s/alfy-G Xx/ —breast-GTEx P};{EI; ¥’;NT
prostate-GTEx 3 KIRC-NT  KICH-NT
ol cervix uteri-GTEx / PRAD-NT
vagina-GTEx ® \  heart-GTI adipose tissue-GTEx KIRP-NT KRG-TP
ACC-TP uterus-GTEx | e = SARC-NT~ -
PCPG-NT nerve-GTEx bladder-GTEx o KIRP-TP
adrenal gland-GTEx colon-GTEx  salivary gland-GTEx idnay:QTEx )
-100 skin-GTEx
GBM'NT. o GBM-TP pancreas-GTEx
rain-atx STAD-NT,  TGCT-TP Lusc-tp ~ OV-TP
UCEC-TP
-200 PAAD-TP_ PAAD-NT BLCA-TP
READ-NT, _
o HNSC-NT
CORDAEe ANSCTP \eescor
STAD-TP X 4 GOAD-TP i
small intestine-GTEx * READ-TP
-300 1 | ! 1 1 J
-600 -400 -200 0 200 400 600
tSNE 1
% Cancer s
M Brain M Liver Kidney M tomach,

@ Non-Cancer

colon, rectum

el?ﬁr
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Developing GEMs is an iterative

In silico model

Experimental measurements

prOCGSS. -1 0 -1 0 o/o 1 0 0 1 \
BN O WM 0 o omEN o0 omms ©0 000000 0ee
1 -1 0 0 0 0 0 0 0 0 7 7 ~N A - -~
* GEMs can serve as a scaffold for ol ¢ (W= oo o omm Q00000000000
integrating & studying diverse types of 0 0 o bmmEW 0 0 0 0 O A ® O O @ LR
9 g ying yPes e ! RS 5 ) S Smodelvesic B ERLGO S XK
(omics) data (but needs formulation into o o0 o o ofa o o o oexperimental] OOOOOOOOOOOO0
GEMs concept). 0o o o o omm o o o ocomparisons| OOOO0OO0OO0OO0O0O00OO0
o o 0 o o o olutmt o O'O © O O OOORCRC B3
. . - O0000 C |
- GEMs are simulation based and (FBA) 0 0 0 0 o 0 o o omm VOO0
and depending on the objective functions /
can provide deeper insights into Model i.mprovement Experimental design
metabolism. and refinement Model

but in the context of metabolism. 1) True positive |2) False negative | [ True prediction
< " . ; 3 T
Experimental M@ E @ M@ E@® False prediction
* | only covered some models and observation 3) False positive |4) True negative | | @ Growth
algorithms that are more interesting for _ M@ E: @ M@ E @ @ No Growth

GEMSs enables the analysis of omics data

me, but there are many other...

@ 0ISB-2024

computation

-}




	Slide 1: GEMs
	Slide 2: Background
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background
	Slide 6: Background
	Slide 7
	Slide 8: The Stoichiometric Matrix
	Slide 9: The Stoichiometric Matrix
	Slide 10: The Stoichiometric Matrix
	Slide 11: Genome-scale model (GEM)
	Slide 12: Genome-scale model (GEM)
	Slide 13: GPR Rules
	Slide 14: Flux Balance Analysis (FBA)
	Slide 15
	Slide 16: Flux Balance Analysis (FBA)
	Slide 17
	Slide 18: Flux Balance Analysis (FBA)
	Slide 19: Flux Balance Analysis (FBA)
	Slide 20: Flux Balance Analysis (FBA)
	Slide 21: Genome-scale metabolic models (GEMs) for data integration 
	Slide 22
	Slide 23: Genome-scale metabolic models (GEMs) for data integration 
	Slide 24: Metabolism and macromolecular expression (ME) model
	Slide 25: GEM contextualization
	Slide 26: GEM contextualization INIT (Integrative Network Inference for Tissues)
	Slide 27: GEM contextualization tINIT1 (Task-driven Integrative Network Inference for Tissues)
	Slide 28: GEM contextualization tINIT1 (Task-driven Integrative Network Inference for Tissues)
	Slide 29: GEM contextualization tINIT2 (Task-driven Integrative Network Inference for Tissues)
	Slide 30: Enzyme-constrained GEMs
	Slide 31: Enzyme-constrained GEMs
	Slide 32: Enzyme-constrained GEMs
	Slide 33: Enzyme-constrained GEMs
	Slide 34:  Predicting Kcat for ecGEM parameterization
	Slide 35:  Predicting kcat for ecGEM parameterization
	Slide 36: Extending the coverage of GEMs: secGEM
	Slide 37: Extending the coverage of GEMs: secGEM
	Slide 38: Integrating Single cell transcriptomics into GEMs
	Slide 39: Human GEMs
	Slide 40: Human GEMs
	Slide 41: Human GEMs
	Slide 42: Human GEMs
	Slide 43: Human GEMs
	Slide 44: Human GEMs
	Slide 45: Human GEMs
	Slide 46: GEM-based comparison of transcriptomes
	Slide 47: GEM-based comparison of transcriptomes
	Slide 48: GEM-based comparison of transcriptomes
	Slide 49
	Slide 50
	Slide 51: Take home Messages

