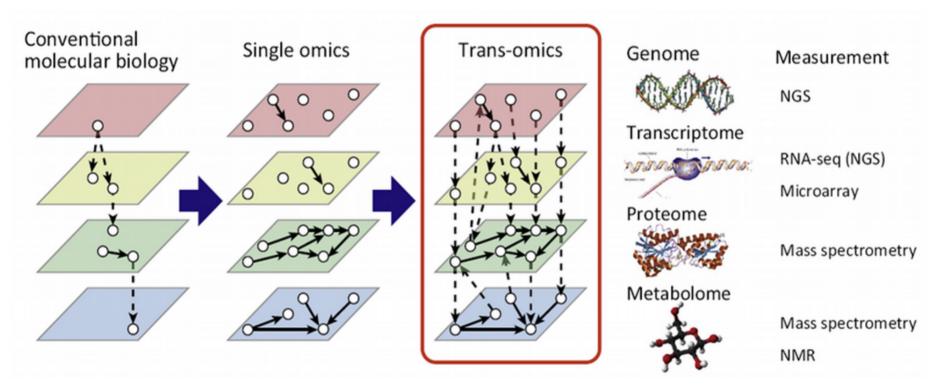


Feature Selection and Supervised Omics Integration

Omics Integration and Systems Biology course Nikolay Oskolkov, Lund University, NBIS SciLifeLab, Sweden



Brief Introduction to Supervised Machine Learning

How does Machine Learning work?

Y = f (X), where X is input (data) and Y is output (response)

Y is present – supervised machine learning Y is absent – unsupervised machine learning

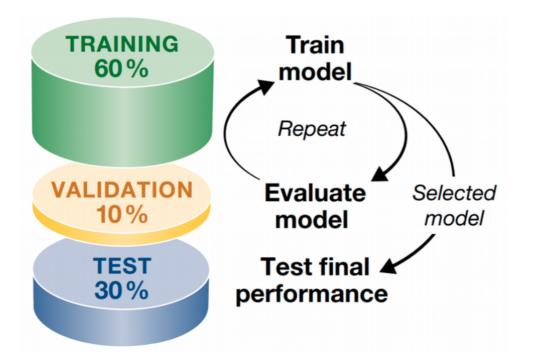


Image adapted from Angenmueller et al., Mol. Syst. Biol. 2016

Machine Learning typically involves five basic steps:

SciLifeLab

1. Split data set into **train**, **validation** and **test** subsets

2. Fit the model on the train subset

3. Validate your model on the validation subset

4. Repeat train - validation split many times and tune hyperparameters

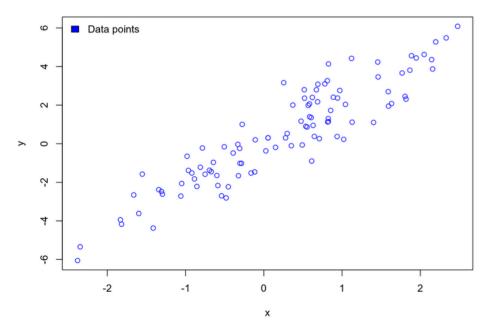
5. Test the accuracy of the optimized model on the test subset.

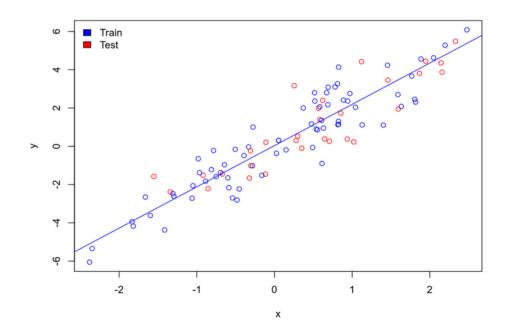
Toy example of supervised machine learningSciLifeLab

1 N <- 100

- 2 x <- rnorm(N)
- 3 y <- 2 * x + rnorm(N)
- 4 df <- data.frame(x, y)</pre>
- 5 plot(y ~ x, data = df, col = "blue")
- 6 legend("topleft", "Data points", fill = "blue", bty = "n")

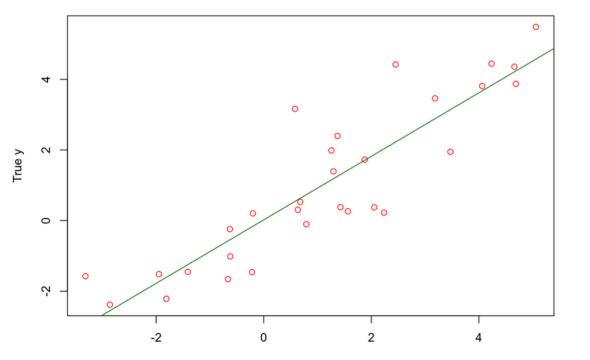
- 1 train <- df[sample(1:dim(df)[1], 0.7 * dim(df)[1]),]</pre>
- 2 test <- df[!rownames(df) %in% rownames(train),]</pre>
- 3 df\$col <- ifelse(rownames(df) %in% rownames(test), "red", "blue")</pre>
- 4 plot(y ~ x, data = df, col = df\$col)
- 5 legend("topleft", c("Train", "Test"), fill=c("blue", "red"), bty="n")
- 6 abline(lm(y ~ x, data = train), col = "blue")





Machine learning model validation

1 test predicted <- as.numeric(predict(lm(y ~ x, data = train), newdata = test))</pre> plot(test\$y ~ test predicted, ylab = "True y", xlab = "Pred y", col = "red") 2 3 abline(lm(test\$y ~ test predicted). col = "darkgreen")



1 summary(lm(test\$v ~ test predicted))

Call:

lm(formula = test\$v ~ test predicted)

Residuals:

Min 10 Median 3Q Max -1.80597 -0.78005 0.07636 0.52330 2.61924

Coefficients:

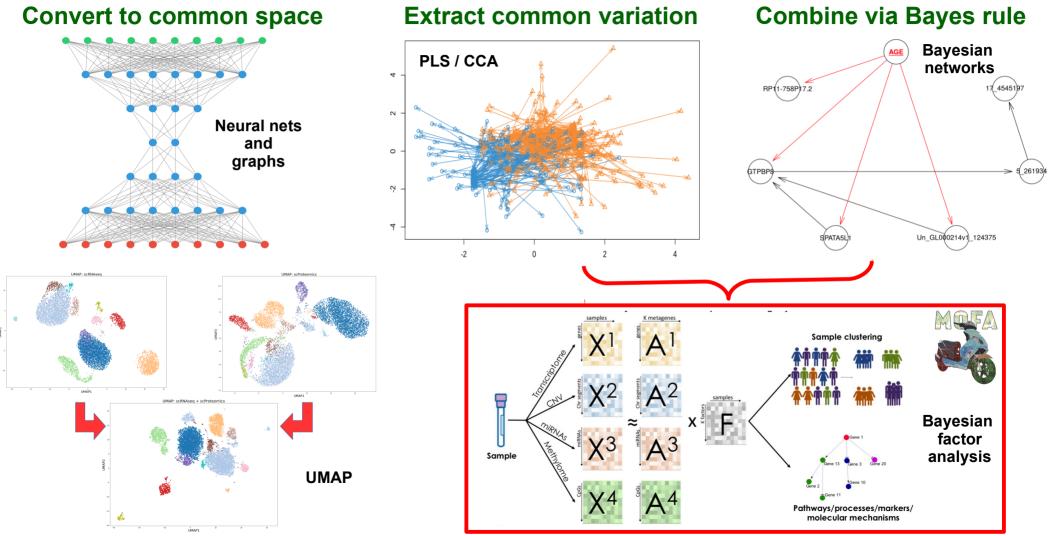
Estimate Std. Error t value Pr(>|t|)(Intercept) 0.02058 0.21588 0.095 0.925 0.08678 10.366 4.33e-11 *** test predicted 0.89953 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1

Residual standard error: 1.053 on 28 degrees of freedom Multiple R-squared: 0.7933, Adjusted R-squared: 0.7859 F-statistic: 107.4 on 1 and 28 DF, p-value: 4.329e-11

Thus the model explains 79% of variation on the test subset.

Supervised Machine Learning applied to Omics Integration

Overview of Integrative Methods

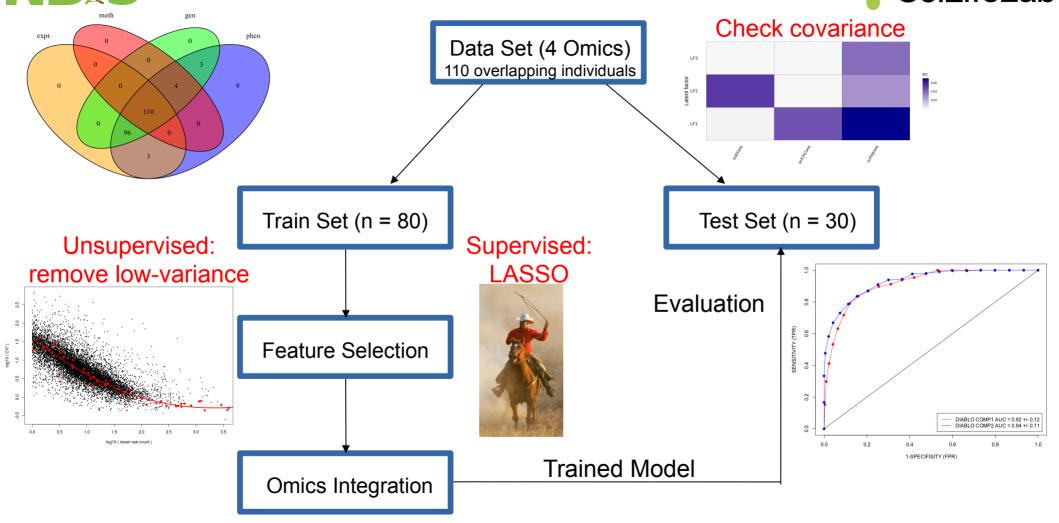


What Method of Integration to Select? SciLifeLab

	Linear	Non-Linear
Supervised	PLS / OPLS / mixOmics, LASSO / Ridge / Elastic Net	Neural Networks, Random Forest, Bayesian Networks
Unsupervised	Factor Analysis / MOFA	Autoencoder, SNF, UMAP, Clustering of Clusters

For Example:
1) With ~100 samples it is a good idea to do linear Omics integration
2) T2D is a phenotype of interest, therefore supervised integration

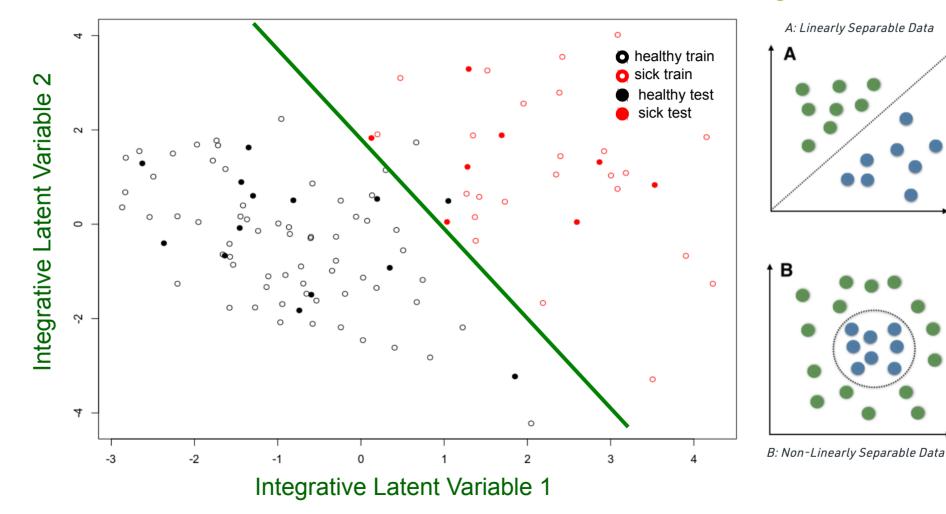
Typical Workflow for Omics Integration J SciLifeLab



Linear Separation: Decision Boundary

• • •

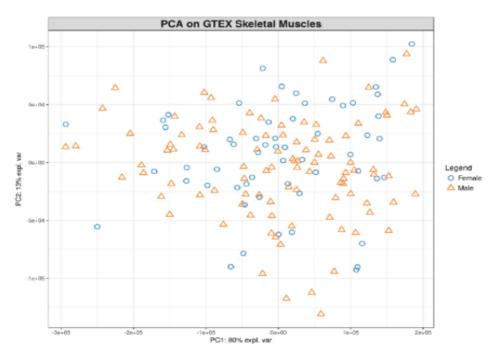
SciLifeLab



Univariate and Multivariate Feature Selection

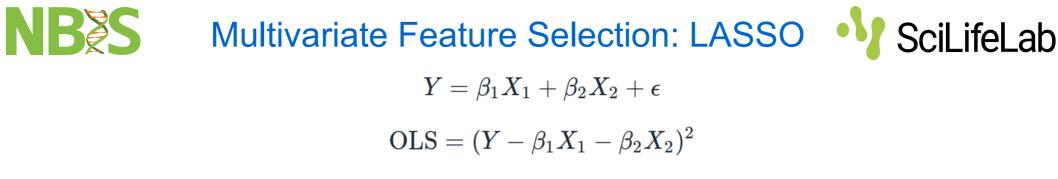
Univariate Feature Selection

Rea	dGTEX.R hosted with * by GitHub view raw	10	}
10	<pre>title = 'PCA on GTEX Skeletal Muscles')</pre>	9	if(isTRUE(i%in
9	<pre>plotIndiv(pca.gtex, group = Y, ind.names = FALSE, legend = TRUE,</pre>	8	p <- append(p,
8	plot(pca.gtex)	7	rho <- append(
7	<pre>pca.gtex <- pca(X, ncomp=10)</pre>	0	
6	library("mixOmics")	6	corr_output <-
5	header=TRUE, sep="\t")\$GENDER	5	
4	<pre>Y <- read.table("GTEX_SkeletalMuscles_157Samples_Gender.txt",</pre>	4	for(i in 1:dim(X
3	<pre>X <- X[,colMeans(X) >= 1]</pre>	3	a <- seq(from=0,
2	<pre>header=TRUE, row.names=1, check.names=FALSE, sep="\t")</pre>	2	p <- vector()
1	<pre>X <- read.table("GTEX_SkeletalMuscles_157Samples_1000Genes.txt",</pre>	1	rho <- vector()



##		GENE	SPEARMAN_RHO	PVALUE	FDR
##	256	ENSG00000184368.11_MAP7D2	-0.5730196	4.425151e-15	2.416132e-12
##	324	ENSG00000110013.8 SIAE	0.3403994	1.288217e-05	3.516833e-03
##	297	ENSG00000128487.12_SPECC1	-0.3003621	1.323259e-04	2.408332e-02
##	218	ENSG00000162512.11_SDC3	0.2945390	1.807649e-04	2.467441e-02
##	38	ENSG00000129007.10_CALML4	0.2879754	2.549127e-04	2.783647e-02
##	107	ENSG00000233429.5_H0TAIRM1	-0.2768054	4.489930e-04	4.085836e-02
##	278	ENSG00000185442.8_FAM174B	-0.2376098	2.731100e-03	2.130258e-01
##	421	ENSG00000234585.2_CCT6P3	-0.2322268	3.426233e-03	2.338404e-01
##	371	ENSG00000113312.6_TTC1	0.2284351	4.007655e-03	2.431310e-01
##	269	ENSG00000226329.2_AC005682.6	-0.2226587	5.064766e-03	2.523944e-01

Generally acknowledged that univariate feature selection has poor predictive capacity compared to multivariate feature selection



Penalized OLS = $(Y - \beta_1 X_1 - \beta_2 X_2)^2 + \lambda(|\beta_1| + |\beta_2|)$

al Dev

in the second se

Cross-validation is a standard way to tune model hyperparameters such as λ in LASSO

NBES Regularizations are Priors in Bayesian stats V SciLifeLab

$$Y=eta_1X_1+eta_2X_2+\epsilon; \;\; Y\sim N(\,eta_1X_1+eta_2X_2,\sigma^2\,)\equiv {
m L}\,(\,{
m Y}\,|\,eta_1,eta_2\,)$$

• Maximum Likelihood principle: maximize probability to observe data given parameters:

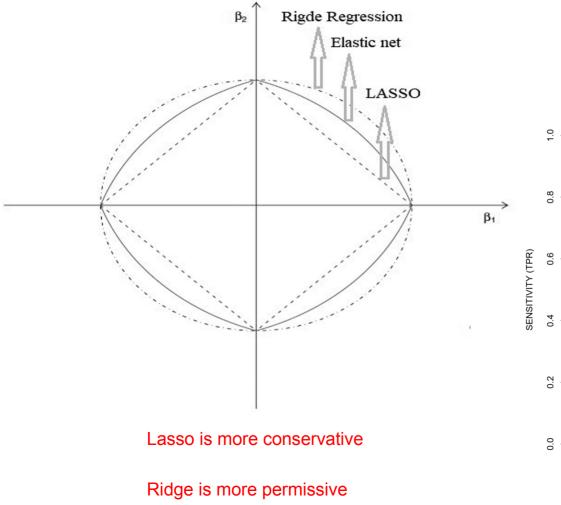
$$\mathrm{L}\left(\left.\mathrm{Y}\,|\,eta_{1},eta_{2}\,
ight.
ight)=rac{1}{\sqrt{2\pi\sigma^{2}}}\mathrm{exp}^{-rac{\left(\mathrm{Y}-eta_{1}\mathrm{X}_{1}-eta_{2}\mathrm{X}_{2}
ight)^{2}}{2\sigma^{2}}$$

• Bayes theorem: maximize posterior probability of observing parameters given data:

 $\label{eq:posterior(params \mid data)} Posterior(params \mid data) = \frac{L(data \mid params) * Prior(params)}{\int L(data \mid params) * Prior(params) \, d(params)}$

$$egin{aligned} ext{Posterior}(eta_1,eta_2 \mid ext{Y}\,) &\sim ext{L}\,(\, ext{Y}\,|\,eta_1,eta_2\,) * ext{Prior}(eta_1,eta_2) &\sim ext{exp}^{-rac{(ext{Y}-eta_1 ext{X}_1-eta_2 ext{X}_2)^2}{2\sigma^2}} * ext{exp}^{-\lambda(|eta_1|+|eta_2|)} \ &- ext{log}\,[ext{Posterior}(\,eta_1,eta_2\mid ext{Y}\,)] &\sim (ext{Y}-eta_1 ext{X}_1-eta_2 ext{X}_2)^2 + \lambda(|eta_1|+|eta_2|) \end{aligned}$$

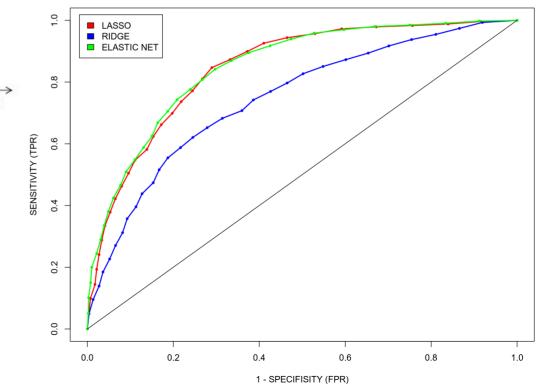
Lasso vs. Ridge vs. Elastic Net



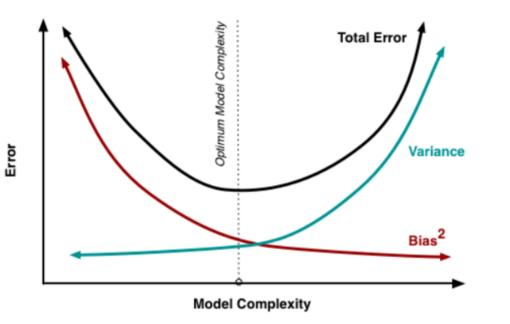
SciLifeLab

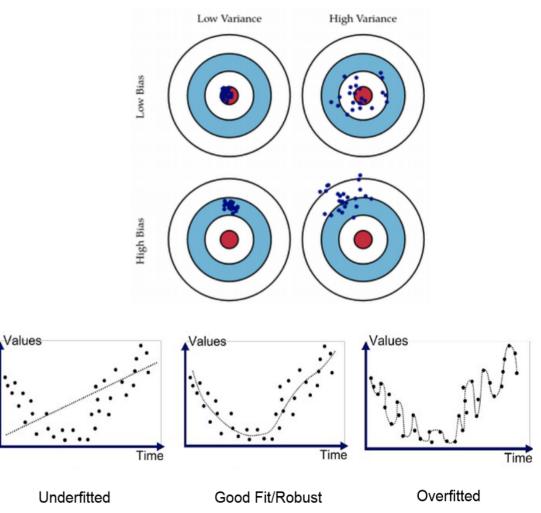
 $\text{Lasso}: |\beta_1|+|\beta_2| \leq \lambda$

 $\operatorname{Ridge}:\beta_1^2+\beta_2^2\leq\lambda$



Penalized regression interpretation



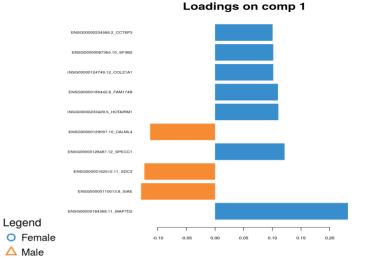


 $Y = f(X) \Longrightarrow \text{Reality}$ $Y = \hat{f}(X) + \text{Error} \Longrightarrow \text{Model}$ $\text{Error}^2 = (Y - \hat{f}(X))^2 = \text{Bias}^2 + \text{Variance}$

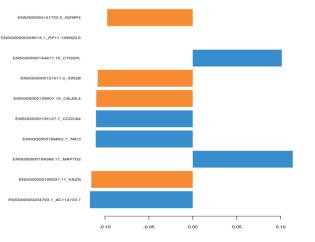
LASSO – high bias, low variance

Multivariate Feature Selection: PLS

Select features that separate two groups of samples the most

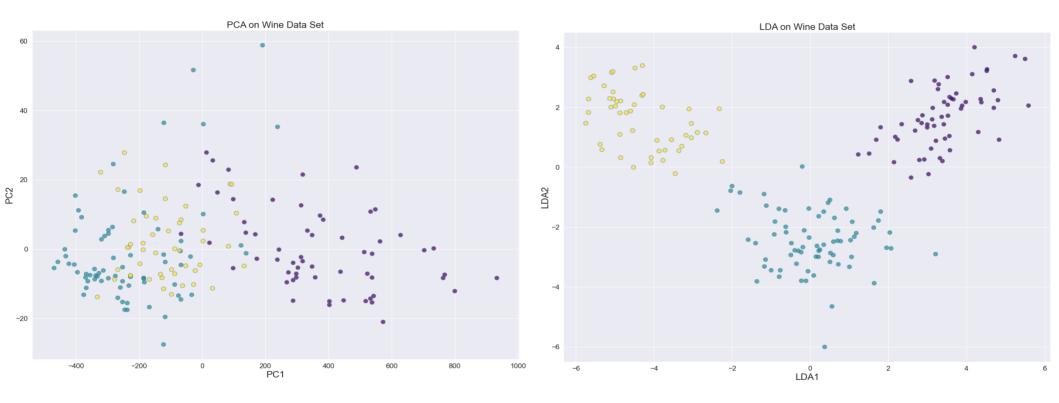


Loadings on comp 2



Outcome
Female
Male

Multivariate Feature Selection: Linear Discriminant Analysis (LDA)

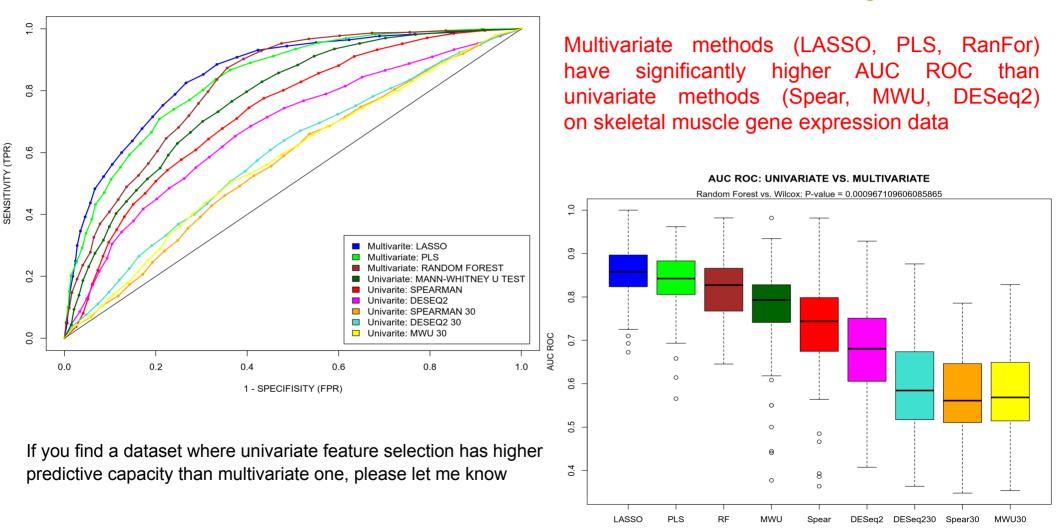


Minimize variance within clusters and maximize variance between clusters

Similar to what ANOVA is doing, therefore LINEAR Discriminant Analysis (LDA)

Univariate vs. Multivariate Prediction

SciLifeLab



DIABLO Omics Integration

Volume 35, Issue 17 1 September 2019

Article Contents

Abstract 1 Introduction 2 Materials and methods 3 Results 4 Discussion Acknowledgements Funding References

JOURNAL ARTICLE

DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays @

Amrit Singh, Casey P Shannon, Benoît Gautier, Florian Rohart, Michaël Vacher, Scott J Tebbutt, Kim-Anh Lê Cao ☎

Bioinformatics, Volume 35, Issue 17, 1 September 2019, Pages 3055–3062, https://doi.org /10.1093/bioinformatics/bty1054 Published: 18 January 2019 Article history ▼

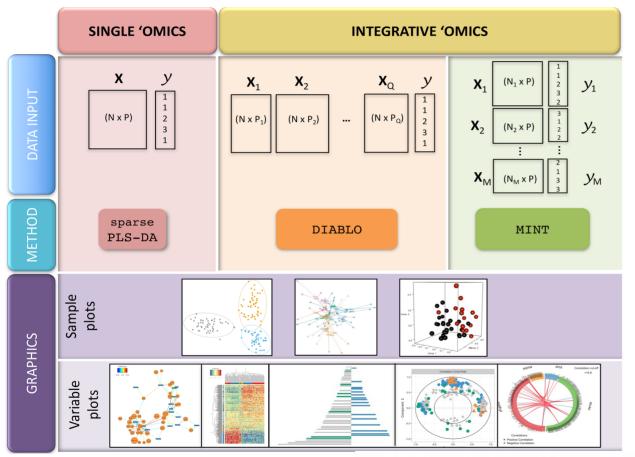
🔎 PDF 💵 Split View 😘 Cite 🔑 Permissions < Share 🔻

Abstract

Motivation

In the continuously expanding omics era, novel computational and statistical strategies are needed for data integration and identification of biomarkers and molecular signatures. We present Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO), a multi-omics integrative method that seeks for common information across different data types through the selection of a subset of molecular features, while discriminating between multiple phenotypic groups.

DIABLO PLS-based algorithm



Denote Q normalized, centered and scaled datasets $X^{(1)}$ $(N \times P_1), X^{(2)}(N \times P_2), \ldots, X^{(Q)}(N \times P_Q)$ measuring the expression levels of P_1, \ldots, P_Q 'omics variables on the same N samples'. sGCCA solves the optimization function for each dimension $h = 1, \ldots, H$:

$$\max_{a_{b}^{(1)},\dots,a_{b}^{(Q)}} \sum_{i,j=1,i\neq j}^{Q} c_{i,j} \operatorname{cov}(X_{b}^{(i)}a_{b}^{(i)}, X_{b}^{(j)}a_{b}^{(j)}),$$
(1)

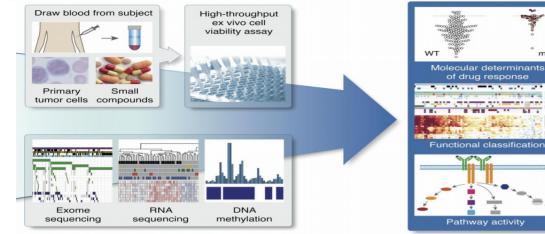
s.t. $||a_b^{(q)}||_2 = 1$ and $||a_b^{(q)}||_1 \le \lambda^{(q)}$ for all $1 \le q \le Q$

where $a_b^{(q)}$ is the variable coefficient or loading vector on dimension h associated to the residual matrix $X_b^{(q)}$ of the dataset $X^{(q)}$. $C = \{c_{i,j}\}_{i,j}$ is a $(Q \times Q)$ design matrix that specifies whether datasets should be connected. Elements in C can be set to zeros when datasets are not connected and ones where datasets are fully connected, as we further describe in Section 2.2. In addition in (1), $\lambda^{(q)}$ is a nonnegative parameter that controls the amount of shrinkage and thus the number of non-zero coefficients in $a_b^{(q)}$. Similar to the LASSO (Tibshirani, 1996) and other ℓ_1 penalized multivariate models developed for single omics analysis (Lê Cao *et al.*, 2011), the penalization enables the selection of a subset of variables with non-zero coefficients that define each component score $t_b^{(q)} = X_b^{(q)} a_b^{(q)}$. The result is the identification of variables that are highly correlated *between* and *within* omics datasets.

$$\max_eta \operatorname{cov}(X,Y) \Longrightarrow \hat{eta}$$

DIABLO Omics Integration

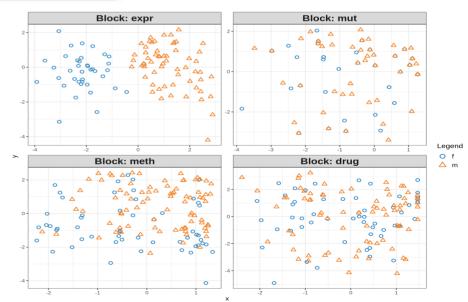
mt

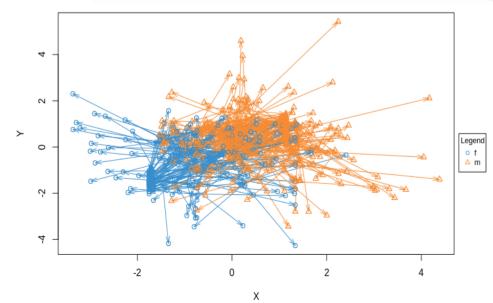


Chronic Lymphocytic Leukaemia (CLL):

gene expression (RNAseq), mutations, methylation, drug response

Dietrich et al., J Clin Invest. 2018





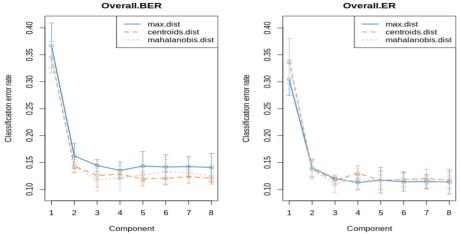
DIABLO visualization

Comp 1-2

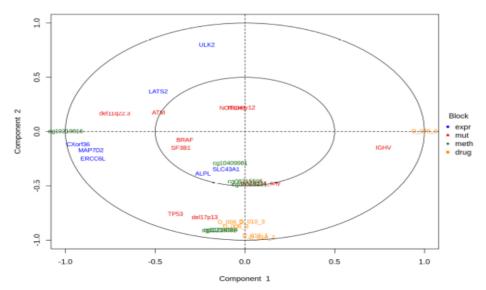
my

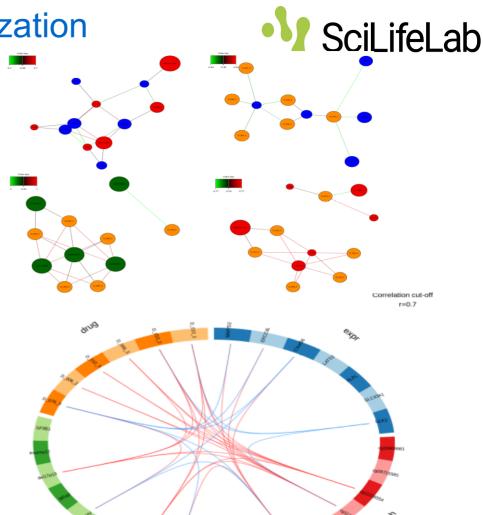
Correlations
 Positive Correlation

Negative Correlation

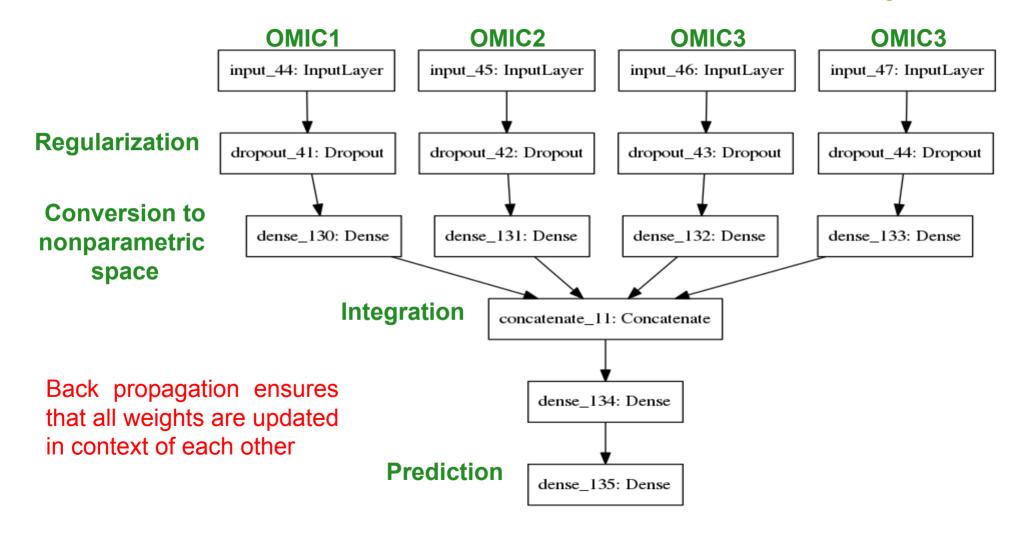


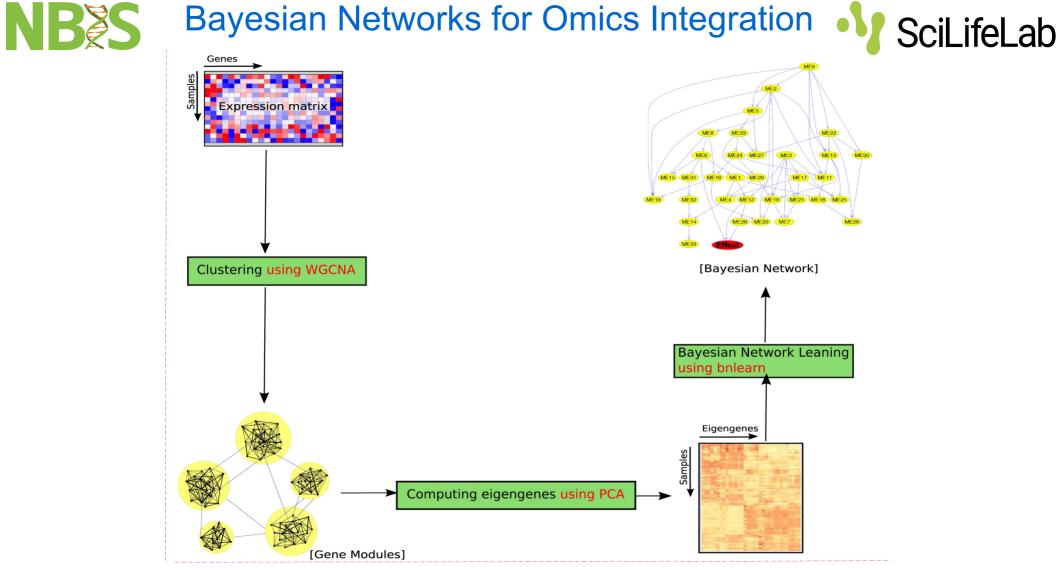
Correlation Circle Plots





NB Supervised deep learning Omics integration SciLifeLab





Agrahari R. et al., Sci Rep. 2018 3;8(1):6951

Random Forest for Omics Integration

Acharjee *et al. BMC Bioinformatics* 2016, **17**(Suppl 5):180 DOI 10.1186/s12859-016-1043-4

BMC Bioinformatics

RESEARCH

CrossMark

Integration of multi-omics data for prediction of phenotypic traits using random forest

Animesh Acharjee^{1,3}, Bjorn Kloosterman^{1,2}, Richard G. F. Visser¹ and Chris Maliepaard^{1*}

From Statistical Methods for Omics Data Integration and Analysis 2014 Heraklion, Crete, Greece. 10-12 November 2014

Abstract

Background: In order to find genetic and metabolic pathways related to phenotypic traits of interest, we analyzed gene expression data, metabolite data obtained with GC-MS and LC-MS, proteomics data and a selected set of tuber quality phenotypic data from a diploid segregating mapping population of potato. In this study we present an approach to integrate these ~ omics data sets for the purpose of predicting phenotypic traits. This gives us networks of relatively small sets of interrelated ~ omics variables that can predict, with higher accuracy, a quality trait of interest.

Results: We used Random Forest regression for integrating multiple ~ omics data for prediction of four quality traits of potato: tuber flesh colour, DSC onset, tuber shape and enzymatic discoloration. For tuber flesh colour beta-carotene hydroxylase and zeaxanthin epoxidase were ranked first and forty-fourth respectively both of which have previously been associated with flesh colour in potato tubers. Combining all the significant genes, LC-peaks, GC-peaks and proteins, the variation explained was 75 %, only slightly more than what gene expression or LC-MS data explain by themselves which indicates that there are correlations among the variables across data sets. For tuber shape regressed on the gene expression, LC-MS, GC-MS and proteomics data sets separately, only gene expression data was found to explain significant variation. For DSC onset, we found 12 significant gene expression, 5 metabolite levels (GC) and 2 proteins that are associated with the trait. Using those 19 significant variables, the variation explained wariation compared to other chromosomes. Transcriptomics and metabolomics analysis on enzymatic discoloration after 5 min resulted in 420 significant genes and 8 significant LC metabolites, among which two were putatively identified as caffeoylquinic acid methyl ester and tyrosine.

National Bioinformatics Infrastructure Sweden (NBIS)

Knut och Alice Wallenbergs Stiftelse

Vetenskapsrådet

UNIVERSITET