

Deep Learning for Omics Integration

Omics Integration and Systems Biology course Nikolay Oskolkov, Lund University, NBIS SciLifeLab, Sweden

Transcription factor binding

TF binding interacts with DNA methylation and chromatin accessibility

Transcription and RNA maturation

Histone modifications

Modifications can be active marks (e.g., H3K4me3 in green) or repressive marks (e.g., H2K27m3 in red)

DNA modifications

C

5mC

5hmC / 5fC / 5caC

Chromosome organization

Higher-order chromatin organization into LADs and TADs

Challenges of Deep Learning in Life Sciences

- Difficult to apply to real Life Science projects (NGS: tabular data)
- Lack of data in Life Sciences (exceptions: single cell, microscopy)
- Simpler (than Deep Learning) methods often perform better

Why don't neural networks always work?

NBS Artificial Neural Networks: general principles

- ANN: a mathematical function Y = f(X) with a special architecture
- Can be non-linear depending on activation function
- Backward propagation (gradient descent) for minimizing error
- Universal Approximation Theorem

Gradient descent: backward propagation

$$y_i = \alpha + \beta x_i + \epsilon, \ i = 1 \dots n$$

$$E(lpha,eta)=rac{1}{n}\sum_{i=1}^n(y_i-lpha-eta x_i)^2$$

$$\hat{\alpha}, \hat{\beta} = \operatorname{argmin} E(\alpha, \beta)$$

$$rac{\partial E(lpha,eta)}{\partial lpha} = -rac{2}{n} \sum_{i=1}^n (y_i - lpha - eta x_i)$$

$$rac{\partial E(lpha,eta)}{\partialeta} = -rac{2}{n} \sum_{i=1}^n x_i (y_i - lpha - eta x_i)$$

Numeric implementation of gradient descent:

$$lpha_{i+1} = lpha_i - \eta rac{\partial E(lpha,eta)}{\partial lpha}igg|_{lpha=lpha_i=eta}$$

$$eta_{i+1} = eta_i - \eta rac{\partial E(lpha,eta)}{\partial eta}igg|_{lpha=lpha_i,eta=eta_i}$$

Coding gradient descent from scratch in R


```
1 n <- 100 # sample size
 2 x <- rnorm(n) # simulated expanatory variable</pre>
  3 \text{ v} \leftarrow 3 + 2 * x + \text{rnorm(n)} \# \text{simulated response variable}
  4 summary(lm(y \sim x))
Call:
lm(formula = v \sim x)
Residuals:
    Min
             10 Median
-1.9073 -0.6835 -0.0875 0.5806 3.2904
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.89720
                         0.09755
                                   29.70
                                         <2e-16 ***
             1.94753
                         0.10688
                                  18.22
                                           <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9707 on 98 degrees of freedom
Multiple R-squared: 0.7721, Adjusted R-squared: 0.7698
```

Let us now reconstruct the intercept and slope from gradient descent

F-statistic: 332 on 1 and 98 DF, p-value: < 2.2e-16

```
1 alpha <- vector(); beta <- vector()
2 E <- vector(); dEdalpha <- vector(); dEdbeta <- vector()
3 eta <- 0.01; alpha[1] <- 1; beta[1] <- 1 # initialize alpha and beta
4 for(i in 1:1000)
5 {
6     E[i] <- (1/n) * sum((y - alpha[i] - beta[i] * x)^2)
7     dEdalpha[i] <- - sum(2 * (y - alpha[i] - beta[i] * x)) / n
8     dEdbeta[i] <- - sum(2 * x * (y - alpha[i] - beta[i] * x)) / n
9
10     alpha[i+1] <- alpha[i] - eta * dEdalpha[i]
11     beta[i+1] <- beta[i] - eta * dEdbeta[i]
12  }
13  print(paste0("alpha = ", tail(alpha, 1),", beta = ", tail(beta, 1)))</pre>
```

```
[1] "alpha = 2.89719694937354, beta = 1.94752837381973"
```


ANN from scratch: problem formulation

	X ₁	X ₂	d (true) y (pred)		
	0	0	0 - circle		
	0	1	0 - circle		
	1	0	1 - cross		
	1	1	1 - cross		

$$\phi(s) = rac{1}{1 + e^{-s}} - ext{sigmoid}$$

 $y(w_1, w_2) = \phi(w_1x_1 + w_2x_2)$

$$\phi'(s) = \phi(s) \left(1 - \phi(s)
ight)$$

Coding ANN from scratch in R


```
phi <- function(x){return(1/(1 + exp(-x)))} # activation function

mu <- 0.1; N_epochs <- 10000

mu <- 0.1; w2 <- 0.5; E <- vector()

for(epochs in 1:N_epochs)

{
    #Forward propagation
    y <- phi(w1 * x1 + w2 * x2 - 3) # we use a fixed bias -3

#Backward propagation

E[epochs] <- (1 / (2 * length(d))) * sum((d - y)^2)

dE_dw1 <- (1 / length(d)) * sum((d - y) * y * (1 - y) * x1)

dE_dw2 <- (1 / length(d)) * sum((d - y) * y * (1 - y) * x2)

w1 <- w1 - mu * dE_dw1

w2 <- w2 - mu * dE_dw2

}

plot(E ~ seq(1:N_epochs), xlab="Epochs", ylab="Error", col="red")</pre>
```

$$E(w_1,w_2) = rac{1}{2N} \sum_{i=1}^N \left(d_i - y_i(w_1,w_2)
ight)^2$$

$$w_{1,2} = w_{1,2} - \mu rac{\partial E(w_1, w_2)}{\partial w_{1,2}}$$

$$rac{\partial E}{\partial w_1} = -rac{1}{N}\sum_{i=1}^N (d_i-y_i) * y_i * (1-y_i) * x_{1i}$$

$$rac{\partial E}{\partial w_2} = -rac{1}{N}\sum_{i=1}^N (d_i-y_i) * y_i * (1-y_i) * x_{2i}$$

1 y

[1] 0.04742587 0.05752359 0.95730271 0.96489475

We nearly reconstruct true labels d = (0, 0, 1, 1)

Supervised deep learning Omics integration

Autoencoder: unsupervised neural network SciLifeLab

Autoencoder dimension reduction: 8617 PBMC cells V SciLifeLab

10X Genomics Mouse Brain: scRNAseq, 1.3M cells 🔥

UMAP1

NB 10X Genomics mouse brain: scRNAseq, 1.3M cells

Autoencoders themselves are perhaps not optimal for visualization of scOmics

Autoencoders can be promising for non-linear data pre-processing, the bottleneck can potentially be fed to tSNE / UMAP

Multi-Omics in Single Cell Genomics

Clark et al., 2018, Nature Communications 9, 781

NB§S

Autoencoder for data integration

Autoencoder for data integration: CITEseq V SciLifeLab

scNMTseq: scRNAseq + scBSseq + scATACseq

scNMTseq: Clark et al., 2018, Nature Communications 9, 781

When Deep Learning is not good enough

Intelligence is to know how much you do not know

Frequentist image recognition

			•		
In [24]:	# correction cannote from 0.235 to 0.0.10 () **Train A Kirnia rehap(Kirnia rehap(K				
In [25]:	<pre># one hot encode outputs y_train = np_utils.to_catego y_test = np_utils.to_catego num_classes = y_test.shape[print(num_classes)</pre>	ical(y_test)			
	10				
In [27]:	Croit for model and Carpath (2, 3), isput these-(1, 28, 28), padding-same', activation-'relu', and add (Carpath) (2, 3), isput these-(1, 28, 28), padding-same', activation-'relu', bernel, Contraint-manorer(3))) Contraint-manorer(3))) Contraint-manorer(3)) Contraint-manorer(3) Contraint-manorer(3) Contraint-manorer(3) Contraint				
	Layer (type)	Output Shape	Param #		
	conv2d_8 (Conv2D)	(None, 32, 28, 28)	320		
	dropout_7 (Dropout)	(None, 32, 28, 28)	0		
	conv2d_9 (Conv2D)	(None, 32, 28, 28)	9248		
	max_pooling2d_4 (MaxPooling2	(None, 32, 14, 14)	0		
	flatten_4 (Flatten)	(None, 6272)	0		
	dense_7 (Dense)	(None, 512)	3211776		
	dropout_8 (Dropout)	(None, 512)	0		
	dense_B (Dense)	(None, 10)	5130		
	Total params: 3,226,474 Trainable params: 3,226,474 Non-trainable params: 0				
	None				
In [28]:	# Fit the model should like the model should be should be should fit. A resi, y train, validation_datas(K_test, y_test), epochs=epochs, batch_size=32) history = model.fit(K_train, y_train, epochs = epochs, verbose = 1, validation_split = 0.25, batch_size= 32, shuffle = True)				
	Train on 45000 samples, validate on 15000 samples				

Prediction

Bayesian image recognition

PyMC3, Edward, TensorFlow Probability

```
In [8]: x_train = x_train.reshape((x_train.shape[0],D))
x_test = x_test.reshape((x_test.shape[0],D))
  In [9]: from keras.utils import to_categorical
y_train = to_categorical(y_train)
y_test = to_categorical(y_trest)
                   (10000, 10
In [10]: ed.set seed(314159)

N = 100 # number of images in a minibatch.

D = D # number of features.

K = 10 # number of classes.
                  # Create a placeholder to hold the data (in minibatches) in a TensorFlow graph
                  # Create a placeholder to hold the data (in minibatches) in a TensorFlow graph.

**x -tt.placeholder(tf.float32, (Mone, 1))
# Mormal(0,1) priors for the variables. Note that the syntax assumes TensorFlow 1.1.

**b Normal(0,0) priors for the variables. Note that the syntax assumes TensorFlow 1.1.

**b Normal(0,0-tf.zens(K), scale+tf.ones(K))

**Categorical Likelihood for classication.

**y - Categorical(tf.nathul(x, w) + b)

**Categorical(tf.nathul(x, w) + b)
 In [11]: # Contract the q(w) and q(b). in this case we assume Mormal distributions.

qw = Normal(loc-tf.Variable(tf.random normal([D, K])),
scale-tf.nn.softplus(tf.Variable(tf.random normal([D, K])))
                  In [12]: def generator(arrays, batch_size = N):
    starts = [0] * len(arrays) # pointers to where we are in iteration
                          while True:
                                   e True:
batches = []
                                        start = starts[i]
stop = start + batch size
diff = stop - array.shape[0]
if diff <= 0:
batch = array[start:stop]
starts[i] += batch_size</pre>
                 else:
    batch = np.concatenate((array[start:], array[:diff]))
    starts[i] = diff
    batches.append(batch)
    yield batches
cifarl0 = qenerator([x train, y train], N)
In [13]: 8 No use a placeholder for the labels in anticipation of the training data.
y, b = ft.placeholder(ft.int22, [N])
### Define the VI inference technique, ie. minimise the KL divergence between q and p.
inference = ck.Klap(kv: qp. b. qb), data-(y: y,ph)
                  # Initialse the infernce variables
inference.initialize(n_iter=50000, n_print=100, scale={y: float(x_train.shape{0}) / N})
                  # We will use an interactive session.
sess = tf.InteractiveSession()
# Initialise all the vairables in the session.
tf.global_variables_initializer().run()
                  # Let the training begin. We load the data in minibatches and update the VI infernce using each new batch.

for _ in range(inference.m iter):
                          In range(interence.n_iter):

Natch, we Natch = mext(cifar10)

# TensorFlow method gives the label data in a one hot vetor format. We convert that into a single label.

# Details no _argmax(Y batch, axis=1)
                          info_dict = inforence.update(feed_dict={x: X_batch, y_ph: Y_batch})
inference.print_progress(info_dict)
                                                                                                           Elapsed: 221s | Loss: 85453.266
In [14]: # Generate samples the posterior and store them.
                  samples = []
                      _samples = []
_samples = []
or _ in range(n_samples):
    w_samp = qw.sample()
    b_samp = qb.sample()
                          w_samples.append(w_samp)
b_samples.append(b_samp)
# Also compute the probability of each class for each (w,b) sample.
prob = tf .nn.softmax(tf.matmul(x_test, w_samp) + b_samp)
                          prob lst.append(prob.eval())
sample = tf.concat([tf.reshape(w_samp,[-1]),b_samp],0)
plt.title("Histogram of prediction accuracies in the CIFAR10 test data")
plt.xlabel("Accuracy")
```


Bayesian Deep Learning for single cell

Bartoschek et al. 2018, Nature Communications, 9, 5150

National Bioinformatics Infrastructure Sweden (NBIS)

Knut och Alice Wallenbergs Stiftelse

