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Multi-Omics Begins: 2015 — until now
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Introduction:
High Dimensional Biological Data
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?5 Biological Data are High Dimensional ScilLifel.ab
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Statistical observations: P dimensions
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Features: genes, proteins,
microbes, metabolites etc.

Hiah Di . | Data: For a robust statistical analysis, one should
g iImensiona ata. properly “sample” the P-dimensional space,

P>>N hence large sample size is required, N >> P



NB;S Some types of data analysis in Life Sciences

P is the number of features (genes, proteins, genetic variants etc.)
N is the number of observations (samples, cells, nucleotides etc.)

Biology / Biomedicine
Bayesianism

Mathematical modeling Frequentism

Exposed
Infected responsible for spreading
;  Infected detected

Total recovered

Total deaths

S+E+1+ I;#R+D

Amount of Data

Ex.1 Y =a+ pX
The Curse of _ (xTx\ x Ty
Dimensionality /= (1 )

(XTX)_1 ~— > 00, n<<p

det (XTX)

*\1 SciLifeLab

Machine Learning
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§ Some peculiarities of Frequentist statistics Scilifel.ab

* Maximum likelihood based

* Focus on summary statistics ‘!

T T T T T T T T
4 8 8 10 12 14 16 18

* Focus too much on p-values

a 2
> (x — )
] =1 104
2 8-
L(xi|po®)= exp 20° .
V2mo? N
L(Xi'/.la, 0_2) B 0 aL(Xl‘“,JZ) B 0 4 6 8 1oxa12 14 16 18 4 6 8 1ox412 14 16 18
O - Do -
N i X Mean: 54.26
1 . :? i Y Mooy 2 BH
_— . 60 . = H . ) :
U= N E T; — meanestimator ; e ot s S 0
.:0 .c ..-....0. 'o.. .
’ . a5 penanen B (0 78 43
, v .....::.::....“::: lare = 0 Db
o’ = N E — variance estimator -

=0



Value

t-test statistics as functions of sample size
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Scientists rise up against statistical
significance

It is questionable whether
p-value is the best metric
for ranking features



NB;S Frequentist stats struggles with high-dimensional data ®

<- 20 # number of samples

<- 2 # number of features / dimensions
<- rnorm{n)

<- matrix(rnorm(n = p), n, p)
ummary(lm(Y ~ X))

w x=—T 3

Call:
1m(formula = ¥ ~ X)
Residuals:
Min 10 Median 3Q Max

-2.8522 -0.6380 0.1451 6.3911 1.8829
Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) ©.14950 8.22949  8.651 8.523
X1 -0.09485 0.28245 -0.333 B.743
X2 -6.11919 0.24486 -0.487 B8.633

Residual standard error: 1.817 on 17 degrees of freedom
Multiple R-squared: ©.02284, Adjusted R-squared: -8.89381
F-statistic: 8.1916 on 2 and 17 DF, p-value: 8.8274

Going to higher dimensions >

n <- 20 # number of

samples

p <- 18 # number of features / dimensions

¥ <- rnorm(n)

X <- matrix(rnorm{n = p), n, p)

summary(lm(Y ~ X))

Call:
1m{formula = ¥ ~ X)
Residuals:

Min 10 Median

-1.8255 -0.4320 0.1056

Coefficients:
Estimate Std.

(Intercept) 6.54916
X1 0.30013
X2 0.68053
X3 -0.18675
X4 -0.21367
X5 -6.19123
X6 0.81074
X7 0.09634
X8 -0.29864
X9 -B.78175
X1e B8.83736

Signif. codes: @ 'sxx' @,

cooocococoo@ @

3Q Max
0.4493 1.0617
Error t value
26472 2.875
21690 1.384
27693 2.457
26810 -0.410
33690 -0.634
31881 -0.600
25221 3.214
24143 8.399
19804 -1.571
35408 -2.208
36936  2.267
001 '+x' B8.01

Pr(>ltl)

8.

Vet

coooo oo @@

0679 .
.1998

8363

L6911
L5417

5634

.65

Residual standard error: 8.8692 on 9 degrees of freedom

Multiple R-squared: .65
F-statistic: 1.741 on 18

Going to even higher dimensions >

92, Adjusted R-squared:
p-value: 0.2089

and 9 DF,

0.2805

Call:

n
P
Y
X
5

<- 20 # number of samples

{
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<- 28 # number of features / dimensions

<- rnorm{n)

<- matrix(rnorm(n = p), n, p)

ummary(1m(Y ~ X))

Im(formula = ¥ ~ X)

Residuals:
ALL 20 residuals are 8: no residual degrees of freedom!

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>ltl)

(Intercept) 1.34889 NaN
X1 B.66218 NaN
X2 B.76212 NaN
X3 -1.35833 NaN
Xb -0.57487 Nan
X5 0.62142 Nan
X6 0.48298 NaN
X7 8.03313 NaN
X8 -0.31983 NaN
X9 -0.92833 NaN
x1e B0.18091 Nan
X11 -1.37618 NaN
X12 2.11438 NaN
X13 -1.75183 NaN
K14 -1.55673 NaN
X15 B.01112 NaN
X16 -0.50943 Nan
X17 -B.47576 NaN
X18 8.31793 NaN
X19 1.43615 NaN
X20 NA A

NaN
NaN
NaN
NaN
NaN

NaN
NaN
NaN
NaN
NaN

Residual standard error: NaN on @ degrees of freedom

Multiple R-squared:
F-statistic:

1, Adjusted R-squared: NaN
NaN on 19 and @ DF,

p-value: NA

This is another way we face the Curse of Dimensionality in computational biology
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More on the Curse of Dimensionality
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Log10-Scale: Average pairwise distance between data points

Distribution of pairwise distances in high-dimensional spaces s
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The differences between closest and farthest data point
neighbours disappears in high-dimensional spaces:
can’t run cluster analysis

Data points become far from each other
and equidistant in high dimensions

In high-dimensional space we can not separate cases and controls any more



Dimension 2

025

050

075

100

EYT) a7 J50 02 0k 035 050 o7 150
Dimension 1

Number of Data Points

Number of Data Points

10

0

2
c

G om0
a

© o025
8
©

O o0
-
o

5o
E<}

€ 050
3

2—075

100

o o 0% 05 ol ok ok o 1o T on 0w o5 o ok o o5 10
Distance from the center of ball Distance from the center of ball
p =10 p =100

100

o 07
2
c

5 o
a

© o025
s
©

O o0
.,
. o
.

o o o ..V g
% ., * Ve a

.i.._. . .-._",. £ 050
* % =
gy . vt wg? E

S s 2 Yos?

o 75 o 1050

0 <5 ok 0B ok on
Distance from the center of ball

oo

OB o o5 o ok o 0%
Distance from the center of ball

100

High-dimensional data can be viewed as
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concept of mean / centroid loses its validity,
hence we can’t use Gaussian distribution



POINTS OF SIGNIFICANCE

The curse(s) of dimensionality

There is such a thing as too much of a good thing.

Naomi Altman and Martin Krzywinski

e generally think that more
information is better than less.
However, in the ‘big data’ era,

the sheer number of variables that can
be collected from a single sample can be
problematic. This embarrassment of riches
is called the ‘curse of dimensionality™ (CoD)
and manifests itself in a variety of ways.
This month, we discuss four important
problems of dimensionality as it applies to
data sparsity’, multicollinearity”, multiple
testing® and overfitting’. These effects are
amplified by poor data quality, which may
increase with the number of variables.
Throughout, we use # to indicate the
sample size from the population of interest
and p to indicate the number of observed
variables, some of which may have missing
values for some samples. For example, we
may have n = 1,000 subjects and p = 200,000
single-nucleotide polymorphisms (SNPs).
First, as the dimensionality p increases,
the “volume’ that the samples may occupy

mraure ranidly Wa ran thinl afanch af tha n

Altman N, Krzywinski M. The curse(s) of dimensionality.

100 31.1%

Fig.1| Data tend to be sparse in higher
dimensions. Among 1,000 (x, y) points in which
both x and y are normally distributed with a mean
of 0 and s.d. =1, only 6% fall within & of (x, y)
=(1.5,1.5) (blue circle). However, when the data
are projected into a lower dimension—shown by
histograms—about 30% of the points (all bins

ceetblaion Lliim mm 3 Bmm mam bl _ AE1 F DLa

> Literature on the Curse of Dimensionality

A and 100 to have the minor allele a. If we
tabulate on two SNPs, A and B, we will
expect only ten samples to exhibit both
minor alleles with genotype ab. With SNPs
A, Band C, we expect only one sample to
have genotype abc, and with four or more
SNPs, we expect empty cells in our table. We
need a much larger sample size to observe
samples with all the possible genotypes. As p
increases, we may quickly find that there are
no samples with similar values of a predictor.

Even with just five SNPs, our ability to
predict and classify the samples is impeded
because of the small number of subjects that
have similar genotypes. In situations where
there are many gene variants, this effect is
exacerbated, and it may be very difficult to
find affected subjects with similar genotypes
and hence to predict or classify on the basis
of genetic similarity.

If we treat the distance between points
(e.g., Eudlidian distance) as a measure of
similarity, then we interpret greater distance

ac arantor diceimilarity Ae hincrancac thie

Nat Methods. 2018

Jun;15(6):399-400. doi: 10.1038/s41592-018-0019-x. PMID: 29855577 .

SciLifeLab
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Fig. 3 | The number of false positives increases
with each additional predictor. The box plots
show the number of false positive regression-fit
P values (tested at a = 0.05) of 100 simulated
multiple regression fits on various numbers

of samples (n =100, 250 and 1,000) in the
presence of one true predictor and k = 10 and
50 extraneous uncorrelated predictors. Box
plots show means (black center lines), 25th and
75th percentiles (box edges), and minimum and
maximum values (whiskers). Outliers (dots)
are jittered.

Correcting for multiple testing does not solve
the problem of too many false-positive hits
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Typical Dimensions of Omics Data
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Multi-Omics Data Integration



NIB3S Integration Across Features vs. Samples *\f SejlifeLab

Horizontal integration (features as anchors)
Cells I>
ARENE ] TITIT T [T

i \Similar to batch

correction problem

Features

Oﬂ No~— ArA
e ) — N AAA
t‘co SNo— AAA

b Cells Vertical integration (cells as anchors)

Here | will
focus on integration
across features

S
Features

.‘7

Argelaguet et al., 2021
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X ntegrating Omics Across Features i
< grating SciLifeLab
/N
Statistical observations: — [0 3 1 .0 23 8 1 1 3
1 1 0 0 7 1 2 2 3 3
e.g. samples, cells etc. L 22 006712 2
1 2310046 1 05 P dimensions
32 2 1 4 3 2 1 6 0 . 4
I:,1 7 4 4 5 3 9 6 1 6 1 Omic1:
7115 2389136 RNAseq N data points
501 6 2 0 0 0 1 5 @
1 6 3 3 4 6 2 0 1 1
1 2 2 4 1 1 3 0 8 2
Features: genes, proteins,
microbes, metabolites etc. I
031 0 23811 3 >
1 1.0 0 7 1 2 2 3 3
1 22 0 0 6 7 1 2 2
1 2 3 10 0 4 6 1 0 5
322 1 4 3 2 1 6 0 .
Pz 7 4 4 5 3 9 6 1 6 1 Omic2:
7 1 1 5 2 8 9 1 3 6 BSseq
5 01 6 2 0 0 0 1 5
1 6 3 3 4 6 2 0 1 1
1 2 2 4 1 1 3 0 8 2

P1 + P2 >> N integration across features leads to even more high-dimensional data



Big Data in Single Cell Genomics ScilLifeLab
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Cumulative Number of Human Genomes

Big in Size or Sample Size? SciLifeLab
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Multi-Omics in Single Cell Genomics ScilifelLab

DNA accessibility ; 4 .
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How to define and evaluate
multi-Omics data integration?



Texts in Statistical Science.
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Methylation Gene Expression Clinical variable
scBSseq scRNAseq Phenotype
Accuracy: 78% il T Accuracy: 83% N i Accuracy: 75%
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1) Convert to common space: \

Neural Networks, SNF, UMAP
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2) Explicitly model distributions:

MOFA, Bayesian Networks Data Integratlon

Accuracy: 96%
3) Extract common variation:
PLS, CCA, Factor Analysis
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Machine Learning optimizes prediction

rediction of future acute kidney injury
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1) Biological data are high-dimensional and notoriously difficult to analyze

2) Integration across Omics is often sensitive to the Curse of Dimensionality
3) Integrating across Omics we expect to discover novel patterns in the data
4) Increased prediction accuracy is an indication of successful data integration

5) Single cell Omics are promising for integration in terms of statistical power
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