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“ “When someone seeks,” said Siddhartha, ‘then it easily happens that his eyes see only the ﬁ ::gz: :;f
thing that he seeks, and he is able to find nothing, to take in nothing. [...] Seeking means: 3 ::g:: §: :
having a goal. But finding means: being free, being open, having no goal.” ” Hermann Hesse i gt T ¥ 5 15~
There is a hidden cost to having a hypothesis. It arises from the relationship between night steps
science and day science, the two very distinct modes of activity in which scientific ideas are C
generated and tested, respectively [1, 2]. With a hypothesis in hand, the impressive strengths Gori"a not G o ”
of day science are unleashed, guiding us in designing tests, estimating parameters, and = orilla
throwing out the hypothesis if it fails the tests. But when we analyze the results of an dlSCOVETEd dISCOVEred
experiment, our mental focus on a specific hypothesis can prevent us from exploring other
aspects of the data, effectively blinding us to new ideas. A hypothesis then becomes a liability HypOtheslS'fOCUSEd 1 4 5
for any night science explorations. The corresponding limitations on our creativity, self-
imposed in hypothesis-driven research, are of particular concern in the context of modern h . f
biological datasets, which are often vast and likely to contain hints at multiple distinet and Hyp0t €sis-free 5 9
potentially exciting discoveries. Night science has its own liability though, generating many
spurious relationships and false hypotheses. Fortunately, these are exposed by the light of day a An artificial datasct given to students with and without explicit hypothescs on the relationship between BMI and the steps taken on a particular day, for
science. emphasizing the complementarity of the two modes. where each overcomes the men and women. b A plot of the dataset. ¢ The contingency table for students in the two groups (“hypothesis-focused,” “hypothesis-free”) that discovered the

gorilla or not [6]
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Multi-Omics Factor Analysis—a framework for
unsupervised integration of multi-omics data sets
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Abstract

Multi-omics studies promise the improved characterization of
biological processes across molecular layers. However, methods for
the unsupervised integration of the resulting heterogeneous data
sets are lacking. We present Multi-Omics Factor Analysis (MOFA), a
computational method for discovering the principal sources of vari-
ation in multi-omics data sets. MOFA infers a set of (hidden) factors
that capture biological and technical sources of variability. It disen-
tangles axes of heterogeneity that are shared across multiple
modalities and those specific to individual data modalities. The
learnt factors enable a variety of downstream analyses, including
identification of sample subgroups, data imputation and the detec-
tion of outlier samples. We applied MOFA to a cohort of 200 patient
samples of chronic lymphocytic leukaemia, profiled for somatic
mutations, RNA expression, DNA methylation and ex wivo drug
responses. MOFA identified major dimensions of disease hetero-
geneity, including immunoglobulin heavy-chain variable region
status, trisomy of chromosome 12 and previously underappreciated
drivers, such as response to oxidative stress. In a second applica-
tion, we used MOFA to analyse single-cell multi-omics data,
identifying coordinated transcriptional and epigenetic changes
along cell differentiation.

Keywords data integration; dimensionality reduction; multi-omics;
personalized medicine; single-cell omics
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Introduction

Technelogical advances increasingly enable multiple biological
layers to be probed in parallel, ranging from genome, epigenome,
transcriptome, proteome and metabolome to phenome profiling
(Hasin et al, 2017). Integrative analyses that use information
across these data modalities promise to deliver more comprehen-
sive insights into the biological systems under study. Motivated by
this, multi-omics profiling is increasingly applied across biological
domains, including cancer biology (Gerstung et al, 2015; lorio
et al, 2016; Mertins et al, 2016; Cancer Genome Atlas Research
Network, 2017). regulatory genomics (Chen et al, 2016). micro-
biology (Kim et al. 2016) or host-pathogen biology (Sederholm
et al, 2016). Most recent technological advances have also enabled
performing multi-omics analyses at the single-cell level (Macaulay
et al, 2015; Angermueller et al, 2016; Guo et al, 2017; Clark et al,
2018; Colomé-Tatché & Theis, 2018). A common aim of such
applications is to characterize heterogeneity between samples, as
manifested in one or several of the data modalities (Ritchie et al,
2015). Multi-omics profiling is particularly appealing if the relevant
axes of variation are not known a priori, and hence may be
missed by studies that consider a single data modality or targeted
approaches.

A basic strategy for the integration of omics data is testing for
marginal associations between different data modalities. A
prominent example is molecular quantitative trait locus mapping,
where large numbers of association tests are performed between
individual genetic variants and gene expression levels (GTEx Consor-
tium, 2015) or epigenetic marks (Chen et al, 2016). While em-
inently useful for variant annotation, such association studies are
inherently local and do not provide a coherent global map of the
molecular differences between samples. A second strategy is the
use of kernel- or graph-based methods to combine different
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MOFA+: a statistical framework for comprehensive
integration of multi-modal single-cell data
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Abstract

Technological advances have enabled the profiling of multiple molecular layers at single-cell
resolution, assaying cells from multiple samples or conditions. Consequently, there is a
growing need for computational strategies to analyze data from complex experimental designs
that include multiple data modalities and multiple groups of samples. We present Multi-
Omies Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and
scalable integration of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional
representation of the data using computationally efficient variational inference and supports
flexible sparsity constraints, allowing to jointly model variation across multiple sample groups
and data modalities.

Background

Single-cell methods have provided unprecedented opportunities to assay cellular
heterogeneity. This is particularly important for studying complex biological processes,
including the immune system, embryonic development, and cancer [1,2,3.4]-
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Step 2: downstream analysis
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Factor analysis models, also called latent variable models, are a probabilistic modelling approach which
aim to reduce the dimensionality of a (big) dataset into a small set of variables which are easier to
interpret and visualise. More formally, given a dataset Yol N samples and D features, latent variable
models attempt to explain dependencies between the features by means of a potentially smaller set of
K unobserved (latent) factors. MOFA is a generalisation of traditional Factor Analysis where the input
data consists of M matrices Y™ = [y™] € RV*P= where each matrix m is called a view. Each view
consists of non-overlapping features which usually, but not necessarily, represent different assays. The
input data is then factorised as:

Ym — ZWmT 4 e'm:‘ (1)

where Z = [z,;,] € RY*¥ is a single matrix that contains the low-dimensional latent variables, W™ =
[wh] € RP=*E are loading matrices that relate the high-dimensional space to the low dimensional rep-
resentation, and €™ = [¢7'] € RP» denotes residual noise. We start by assuming Gaussian residuals €™,
similar to standard (group) factor analysis models, while allowing for heteroscedasticity across features:

pleg’) =N (e 10,1/7]"). (2)

This results in the following normal likelihood (for extensions to non-Gaussian settings see [section 4)):

puna) =N (v | 2wl 1/70) (3)

where w". denotes the d-th row of the loading matrix W™ and z, . the n-th row of the latent factor
matrix Z. For a fully probabilistic treatment we place prior distributions on the weights W™, the latent
variables Z as well as on the precision of the noise 7. We use a standard Gaussian prior on the latent
variables and a conjugate Gamma prior for the precision:

P(zﬂ.k) = N(Zn,k | 0, 1) ) (4)
p(7d") =G (74" [ ag, b5) , (5)

R. Argelaguet et al., Mol. Syst. Biol. 2018

MOFA: Bayesian Group Factor Analysis

SciLifeLab

To ensure scalable inference we use a variational approach with a mean-field approximatiun. Briefly,
in variational inference the true intractable posterior distribution of the unobserved variables p(X|Y)
is approximated by a simpler distribution of factorized form ¢(X) = [, ¢(X;) that leads to an efficient
inference scheme. Here, X denotes all the hidden variables (including parameters) and Y denotes all the
observed variables.

Under this approximation, the true log marginal likelihood log p(Y) is lower bounded by:

LX) = /q(X)(log% +10gp(Y))riX
= log p(Y) — KL(¢(X)[[p(X]Y)) (11)
< logp(Y)

£(X) is called the Evidence Lower Bound (ELBOQ), which is equal to the sum of the model evidence
and the negative KL-divergence between the true posterior and the variational distribution. The key
observation here is that increasing the ELBO is equivalent to decreasing the KL-divergence between the
two distributions.

Variational learning involves optimising the functional £(X) with respect to the distribution ¢(X). If we
allow any possible choice of ¢(X), then the maximum of the lower bound £(X) will oceur when the KL-
divergence vanishes, which occurs when ¢(X) equals the true posterior distribution p(X|Y'). Nevertheless,
since the true posterior is intractable, this does not lead to any simplification of the problem. Instead,
it is necessary to consider a restricted family of variational distributions that are tractable to compute

and then seek the member of this family for which the KL divergence is minimised .

Mean-field approximation

The most common type of variational Bayes, known as mean-field approach, assumes that the variational
distribution factorises over M disjoint groups of variables:

M
q(X) = [ a(x)
i=1

Evidently, this family of distributions does not usually contain the true posterior because the unobserved
variables have dependencies, but this assumption allows the derivation of an analytical inference scheme
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scNMT-seq enables joint profiling of chromatin
accessibility DNA methylation and transcription in

single cells

Stephen J. Clark® 1 Ricard Argelaguet2'3, Chantriolnt-Andreas Kapourani® 4 Thomas M. Stubbs,

Heather J. Lee'>%, Celia Alda-Catalinas® !, Felix Krueger®7 Guido Sanguinetti4, Gavin Kelse\,rcaw'8

John C. Marioni® 232 Oliver Stegle® 2 Wolf Reik!>8

Parallel single-cell sequencing protocols represent powerful methods for investigating reg-
ulatory relationships, including epigenome-transcriptome interactions. Here, we report a
single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome
profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing)
uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA
sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem
cells, finding links between all three molecular layers and revealing dynamic coupling
between epigenomic layers during differentiation.
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MOFA application for scNMTseq
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MOFA: Omics contributions to Clusters
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Other unsupervised integrative Omics methods
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Figure 2. Clustering of clusters. This kind of methods first clusters in every single omics dataset and then integrates the primary
clustering results into final cluster assignments.

Wang et al., Quantitative Biology 2016, 4(1): 58-67
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Graph Intersection Method
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