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Overview



Pre-processing
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Building networks

Hasin 2017




Mardinoglu 2018

Piening 2018

Distance calculation Graph analysisRaw

Outlier

https://link.springer.com/content/pdf/10.1186/s13059-017-1215-1.pdf
https://www.nature.com/articles/s41575-018-0007-8/figures/3
https://www.cell.com/cell-systems/pdfExtended/S2405-4712(17)30555-0
https://www.nature.com/articles/s41575-018-0007-8/
https://www.nature.com/scitable/topicpage/biological-complexity-and-integrative-levels-of-organization-468/#
https://www.nature.com/articles/s41575-018-0007-8
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Interomic vs Intraomic networks

Networks may be build for individual omics or for their integration


What is my biological question?


• Do I want to analyse vertical relationships between features?


• Biological motivation for integrating omics with different coverage 
(e.g. transcriptomic and proteomic)


• Do I want to extract functional properties?

Hasin 2017

https://link.springer.com/content/pdf/10.1186/s13059-017-1215-1.pdf
https://link.springer.com/content/pdf/10.1186/s13059-017-1215-1.pdf


1. Feature association


2. K-nearest neighbour graph (k-NNG) construction


3. Knowledge-based


4. Genome-scale metabolic models
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Different approaches for network inference

No prior  
graph structure

Based on  
prior information



Balanced dataset for group sizes     

Common approach: compute correlations between different features


- Spearman


- Pearson


Extend known associations
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1. Association analysis

Wu 2019

GroupA (80 samples) vs GroupB (20 samples)
GroupA (50 samples) vs GroupB (50 samples)

https://www.mdpi.com/2571-5135/8/1/4
https://www.mdpi.com/2571-5135/8/1/4


Easy to interpret


Unweighted vs weighted ( )


Unbalanced networks


Prone to type I errors


Filtering


• FDR vs Bonferroni


• Correlation coefficient cutoff


Need adjustment to possible confounding factors

−1 ≤ ρ ≤ 1

7Wu 2019

Uhlen 2017

1. Association analysis

https://science.sciencemag.org/content/sci/357/6352/eaan2507.full.pdf
https://www.mdpi.com/2571-5135/8/1/4
https://science.sciencemag.org/content/357/6352/eaan2507/tab-pdf


Adjusting for confounding factors: partial correlation analysis


Below: 


- gender and age are known confounding factors


- feature regression on confounding factors, followed by correlation on the residuals of each model 
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1. Association analysis

Price  2016
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Does your graph have many cliques? Possibly noisy 

Graph contraction simplifies the graph by successively grouping cliques 


Problem: reduces information and prevents studying many properties of the graph

9

Computationally expensive representations may be simplified

Clarke 2011

Krzywinski 2013


Sham 2014

Nygaard 2016

Piening 2018


other refs as links 

https://www.nature.com/articles/s41575-018-0007-8/
https://www.nature.com/articles/nprot.2010.182
https://www.nature.com/articles/nmeth.2738
https://www.nature.com/articles/nrg3706
https://academic.oup.com/biostatistics/article/17/1/29/1744261
https://www.cell.com/cell-systems/pdfExtended/S2405-4712(17)30555-0
https://www.nature.com/scitable/topicpage/biological-complexity-and-integrative-levels-of-organization-468/#


1. For each pair of features (u, v), compute a distance metric:


- Correlation


- Euclidean


- Jaccard


- …


2. For each feature, select the closest k neighbours


Efficiency (not scalable, compute all neighbours for every node)


Generates well-structured graph


Simple as it reduces the number of features


Loses potentially important information because k is fixed

10

2. k-nearest neighbour graph

Dong 2011

https://www.cs.princeton.edu/cass/papers/www11.pdf


High k is smooth, but biased (underfitting)


Low k is accurate, but noisy (overfitting)


Optimum k may be identified:


- cross validation


- ad-hoc
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2. k-nearest neighbour graph

Uhlen 2017

https://science.sciencemag.org/content/357/6352/eaan2507/tab-pdf
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3. Knowledge-based graph creation
Database-derived 

• PPI


• TFRN


• Metabolic Atlas


• … 

Many reference databases


KEGG


Reactome


WikiPathways


STRING-DB



13

3. Knowledge-based graph creation
Multi-omic biological networks

Zhang 2019

http://multiomics.inetmodels.com/
https://www.biorxiv.org/content/10.1101/662502v1
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3. Knowledge-based graph creation
NAR December 2019: 1637 databases


Rigden 2019

https://academic.oup.com/nar/article/48/D1/D1/5695332
https://academic.oup.com/nar/article/47/D1/D1/5280358
https://academic.oup.com/nar/article/48/D1/D1/5695332
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3. Knowledge-based graph creation
Little overlap among reference pathways

Doming-Fernandez  2018

https://academic.oup.com/nar/article/47/D1/D1/5280358
https://www.nature.com/articles/s41540-018-0078-8.pdf
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3. Knowledge-based graph creation
How to overlay your data based on known interactions?


- Filter your predicted interactions based on known information? (intersection)


- Add interactions that are not found in the reference networks?


Feizi 2013

https://www.nature.com/articles/nbt.2635#f1
https://www.nature.com/articles/nbt.2635#f1
https://www.nature.com/articles/nbt.2635#f1
https://www.nature.com/articles/nbt.2635#f1
https://www.nature.com/articles/nbt.2635#f1
https://www.nature.com/articles/nbt0415-424
https://www.nature.com/articles/nbt0415-424
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4. Genome-scale metabolic models as integrative networks

Väremo 2013 
Orth et al Nat Biotechnol (2010).

F6P

FBP

DHAP G3P

G6P

v2v3

v4

v1

Z

v5

g1 
g2 
g3 
g4 
g5 

https://www.frontiersin.org/articles/10.3389/fphys.2013.00092/full
https://pubmed.ncbi.nlm.nih.gov/20212490/
https://www.frontiersin.org/articles/10.3389/fphys.2013.00092/full
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Väremo 2013 
Orth et al Nat Biotechnol (2010).

F6P

FBP

DHAP G3P

G6P

v2v3

v4

v1

Z

v5

g1 
g2 
g3 
g4 
g5 

4. Genome-scale metabolic models as integrative networks

https://www.frontiersin.org/articles/10.3389/fphys.2013.00092/full
https://pubmed.ncbi.nlm.nih.gov/20212490/
https://www.frontiersin.org/articles/10.3389/fphys.2013.00092/full
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Väremo 2013 
Orth et al Nat Biotechnol (2010).

F6P

FBP

DHAP G3P

G6P

v2v3

v4

v1

Z

v5

g1 
g2 
g3 
g4 
g5 

Optimize Z

4. Genome-scale metabolic models as integrative networks

https://www.frontiersin.org/articles/10.3389/fphys.2013.00092/full
https://pubmed.ncbi.nlm.nih.gov/20212490/
https://www.frontiersin.org/articles/10.3389/fphys.2013.00092/full
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[context]

4. Genome-scale metabolic models as integrative networks



21https://metabolicatlas.org/

Simulate flux distributions


Dysregulated pathways


Reporter metabolites


Essential genes


Targetable enzymes


May be combined with  
standard graph analysis

4. Genome-scale metabolic models as integrative networks

https://metabolicatlas.org/
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GEMs may be used to find such missing relationships, but there is a coverage issue


The overall strategy follows


1. Integrate proteomic, transcriptomic, metabolomic, fluxomic


2. Flux distribution


3. Compute metabolite-reaction-gene relationships


4. Extract relevant relationships (met-met, gene-gene)


4b. Exclude unnecessary interactions (e.g. cofactors)


5. Downstream analysis (e.g. topology, stratification)

Varemo 2013

F6P

FBP

DHAP G3P

G6P

v2v3

v4

v1

Z

v5

G6P

F6P

DHAP

G3P

4. Genome-scale metabolic models as integrative networks

https://link.springer.com/article/10.1007/s10295-014-1554-9
https://link.springer.com/article/10.1007/s10295-014-1554-9


23Thiele 2020

4. Genome-scale metabolic models as integrative networks

Personalised whole-body models 
of host  
+  
gut microbiome

26 organs


6 blood cell types


80,000 biochemical reactions

https://link.springer.com/article/10.1007/s10295-014-1554-9
https://www.embopress.org/doi/full/10.15252/msb.20198982
https://www.embopress.org/doi/full/10.15252/msb.20198982


Sample-sample clustering based on multi-omic data improves clustering 

Single-omics present complementary (non-redundant) information


Enables further comparisons between clusters

24

Similarity network fusion

Wang 2014

https://www.nature.com/articles/nmeth.2810
https://www.nature.com/articles/nmeth.2810
https://www.nature.com/articles/nmeth.2810


1. Introduction to network analysis 
2. Terminology 
3. Network inference 
4. Key network properties 
5. Community analysis
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Overview



You have built an association network (e.g. PPI, multi-omic).  
How to identify pivotal features, their organization, and 
biological characteristics?

26

Motivation

multiomics.inetmodels.com/

http://multiomics.inetmodels.com/
http://multiomics.inetmodels.com/
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Key network properties to discuss
1. Network representations 

2. Network density 

3. Paths 

4. Centrality 

5. Clustering coefficient 

6. Degree and connectivity distributions 
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1. Network representations
Representations of a metabolic network: pyrimidine metabolism

Metabolism
Graph representation: 

metabolites and co-factors
metabolite-metabolite 

association

Other representations: Protein-Protein, Protein-Metabolite

(directed graph) (undirected graph) (undirected graph)
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A dense graph is a graph where the number of edges approximates the 
maximum possible number of edges for the given node number.


We can thus compute the network density (or global connectivity) as


Undirected graphs:   


E : number of edges


V : number of vertices

D =
2 * E

V ⋅ (V − 1)

2. Network density

V ⋅ (V − 1)
2

Possible edges =
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Higher density indicates higher associations in the network,  
which implies lower resilience to changes.

0 ≤ D ≤ 1

2. Network density 

D ≈ 0.67 D = 0.5 D ≈ 0.33
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Evolutionary analysis of biological networks indicates general sparsity


Network structure must balance robustness to mutation, stochasticity and environmental queues


Sparse networks show higher robustness when accounting for costs and benefits of complexity


2. Biological network density

Leclerc 2008

dense network (density 0.9) 


sparse network (density 0.1) 

D

https://www.embopress.org/doi/full/10.1038/msb.2008.52
https://www.embopress.org/doi/full/10.1038/msb.2008.52
https://www.embopress.org/doi/full/10.1038/msb.2008.52
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3. Paths

Distance between nodes is measured in path length 


In directed graphs, the shortest path between  
(a, b) ≠ (b, a)
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3. Paths

Cycles and acyclic graphs


The average path gives a measure of network navigability 
(~feature relationships)


Average path length = 1.8
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4. Connectivity

Node connectivity : minimum number of nodes whose 
removal renders the network disconnected


Edge connectivity : minimum number of edges whose 
removal renders the network disconnected

κ(G)

λ(G)



35

4. Connectivity

 = 1; cut: v2


 = 2; bridge: ( (v2 , v1 ) & (v2 , v4 ) ) 

κ(G)

λ(G)

Local connectivity may also be 
computed for any given pair of vertices


(e.g. v3,v1:     v2 and associated edges)
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5. Centrality
Indicate the most central nodes in a network

Why look at the central nodes? 


Hubs


Example: Transcription Factor Master Regulators


Tyagarajan 2014

https://www.nature.com/articles/nrn3670
https://www.nature.com/articles/nrn3670
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5. Centrality
Indicate the most central nodes in a network


Central nodes possibly most  important in the network


There are many different measures of centrality:


- Degree 

- Eccentricity


- Betweenness 

- Closeness 

- Eigenvector 

- PageRank  

- Katz


- Percolation


- Cross-clique


…
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Degree indicates the number of connections with a node


d(v) = |N(i)| 

where N(i) is the number of 1st neighbours of a node.

deg(v1) = 4

deg(v1) = 4

4. Centrality: degree centrality
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Undirected networks vs directed networks


In-degree vs Out-degree 

Numbers indicate degree:

In-degree Out-degreeUndirected

CD(vi) =
N

∑
j=1

eij

4. Centrality: degree centrality
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4. Centrality: degree centrality

Centrality normalization allows for comparison between networks of 
different sizes

CD(vi) =
N

∑
j=1

eij

Degree centrality

CD(vi) =
∑N

j=1 eij

N − 1

Normalized 
degree centrality
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4. Centrality: betweenness centrality

Betweenness considers the number of shortest paths passing through each edge
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4. Centrality: eccentricity centrality

Eccentricity considers a node’s maximum shortest path to all other nodes


max d(i, j) CE(vi) =
1

max d(i, j)
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5. Centrality: limitations & influence
Node centrality is used as proxy for importance  

Should be:


1. Complement with experimental observations


2. Compute multiple metrics and summarise joint observations


3. Compute node influence, modifications of centrality 

• Accessibility


• Dynamic influence


• Impact


• Expected force 

Measure information transmission rather than connectiveness

Bidkhori 2018

https://www.pnas.org/content/115/50/E11874
https://www.nature.com/articles/nrn3670
https://www.pnas.org/content/115/50/E11874
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6. Clustering coefficient
How likely is it that two connected nodes are part of a highly connected group of nodes?


If node v1 is connected with v2 and v3, it is very likely that v2 and v3 are also connected.


Takes into account degree of a node and the degree of its 1st neighbours


For node v1  

- deg(v1) = k = 5

- n connections between 1st neighbours of v1 = 2

Ci =
2 ⋅ n

k ⋅ (k − 1)

C(v1) =
2 ⋅ 2
5 ⋅ 4

= 0.2 C(v7) =
2 ⋅ 0
1 ⋅ 0

= 0 or ND
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6. Clustering coefficient

 gives the fraction of possible interconnections for neighbours of node i


where   is the maximum number of triangles through a node

Ci =
2 ⋅ n

k ⋅ (k − 1)

k ⋅ (k − 1)
2

0 ≤ Ci ≤ 1

The global clustering coefficient C(G) is simply the average of 
its clustering coefficients
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What distinguishes biological networks from random?

Do metabolic networks display different network 
properties from random networks?

Random network

Barabasi 2004 
Jeong 2000

Ravasz 2002

Metabolic network

https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/35036627
https://www.nature.com/articles/35036627
https://science.sciencemag.org/content/297/5586/1551
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
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7. Degree and clustering coefficient distribution

Degree distributions allow us to compare network organization

Random network 
(e.g. Erdös-Rényi model)

Poisson degree distribution  
shows no highly connected nodes

Barabasi 2004

Most nodes have near <k>

https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
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Metabolic networks show hierarchical topology

Ravasz 2002

Metabolic networks of 43 organisms are organised 
into small, tightly connected modules 

Their combination shows a hierarchical structure

https://www.nature.com/articles/nrg1272
https://science.sciencemag.org/content/297/5586/1551
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7. Degree distribution
Biological networks do not follow topology features of random networks.


Analysis of metabolic networks of 43 organisms shows common patterns


Biological networks tend to display high robustness to node failure: 
removal of <80% nodes still retains paths between any two nodes

Barabasi 2004 
Jeong 2000

Hierarchical network
Degree distribution 

shows many with low degrees 
a few highly connected nodes

https://www.nature.com/articles/35036627
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/35036627
https://www.nature.com/articles/35036627
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
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7. Degree and clustering coefficient distribution

Random network

Barabasi 2004 
Jeong 2000

Hierarchical network

 shows no relationship with k in random networks: no modular organisation


 in hierarchical networks


Sparsely connected nodes are part of highly modular areas


Communication between highly clustered neighbourhoods maintained by a few hubs

C(k)

C(k) = k−1

https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/35036627
https://www.nature.com/articles/35036627
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272
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7. Small world
Any two nodes can be connected in a small number of steps.


This is a property seen in random networks where the mean path length 


  for a network of size N 

Many biological networks show ultra-small world properties:





l(G) ≈ logN

l(G) ≈ log(logN)

Highly central hubs tend not to be 
connected in biological networks:  
they are disassortative 

(social networks: assortative)


Barabasi 2004

https://www.nature.com/articles/nrg1272
https://www.nature.com/articles/nrg1272


• Analysis of Biological Networks - General introduction into biological networks, 
network notation, and analysis, including graph theory.


• Using graph theory to analyze biological networks - overview of the usage of 
graph theory in biological network analysis


• Survival of the sparsest: robust gene networks are parsimonious - analysis of 
network complexity and robustness.


• Network biology: understanding the cell's functional organization - Overview of 
key concepts in biological network structure


• Graph Theory and Networks in Biology - extended perspective on how graph 
analysis is applied in biology


• Modularity and community structure in networks


Additional references displayed as hyperlinks in each figure.
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Additional reading

https://books.google.se/books?id=YeXLbClh1SIC&source=gbs_navlinks_s
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101653/
https://www.embopress.org/doi/full/10.1038/msb.2008.52
https://www.nature.com/articles/nrg1272
http://mural.maynoothuniversity.ie/1885/1/HamiltonMasonGraphTheory.pdf

