import numpy as np
import pandas as pd
import scanpy as sc
import matplotlib.pyplot as plt
import warnings
import os
import subprocess
="ignore", category=Warning)
warnings.simplefilter(action
# verbosity: errors (0), warnings (1), info (2), hints (3)
= 2
sc.settings.verbosity =80) sc.settings.set_figure_params(dpi
Code chunks run Python commands unless it starts with %%bash
, in which case, those chunks run shell commands.
Celltype prediction can either be performed on indiviudal cells where each cell gets a predicted celltype label, or on the level of clusters. All methods are based on similarity to other datasets, single cell or sorted bulk RNAseq, or uses known marker genes for each cell type.
Ideally celltype predictions should be run on each sample separately and not using the integrated data. In this case we will select one sample from the Covid data, ctrl_13
and predict celltype by cell on that sample.
Some methods will predict a celltype to each cell based on what it is most similar to, even if that celltype is not included in the reference. Other methods include an uncertainty so that cells with low similarity scores will be unclassified.
There are multiple different methods to predict celltypes, here we will just cover a few of those.
Here we will use a reference PBMC dataset that we get from scanpy datasets and classify celltypes based on two methods:
- Using scanorama for integration just as in the integration lab, and then do label transfer based on closest neighbors.
- Using ingest to project the data onto the reference data and transfer labels.
- Using Celltypist to predicted with a pretrained pbmc model or with an own model based on the same reference data as the other methods.
First, lets load required libraries
Let’s read in the saved Covid-19 data object from the clustering step.
# download pre-computed data if missing or long compute
= True
fetch_data
# url for source and intermediate data
= "https://nextcloud.dc.scilifelab.se/public.php/webdav"
path_data = "zbC5fr2LbEZ9rSE:scRNAseq2025"
curl_upass
= "data/covid/results"
path_results if not os.path.exists(path_results):
=True)
os.makedirs(path_results, exist_ok
= "data/covid/results/scanpy_covid_qc_dr_int_cl.h5ad"
path_file if fetch_data and not os.path.exists(path_file):
= os.path.join(path_data, "covid/results_scanpy/scanpy_covid_qc_dr_int_cl.h5ad")
file_url "curl", "-u", curl_upass, "-o", path_file, file_url ])
subprocess.call([
= sc.read_h5ad(path_file)
adata adata
AnnData object with n_obs × n_vars = 7332 × 3984
obs: 'type', 'sample', 'batch', 'n_genes_by_counts', 'total_counts', 'total_counts_mt', 'pct_counts_mt', 'total_counts_ribo', 'pct_counts_ribo', 'total_counts_hb', 'pct_counts_hb', 'percent_mt2', 'n_counts', 'n_genes', 'percent_chrY', 'XIST-counts', 'S_score', 'G2M_score', 'phase', 'doublet_scores', 'predicted_doublets', 'doublet_info', 'leiden', 'leiden_0.4', 'leiden_0.6', 'leiden_1.0', 'leiden_1.4', 'kmeans5', 'kmeans10', 'kmeans15', 'hclust_5', 'hclust_10', 'hclust_15'
var: 'gene_ids', 'feature_types', 'genome', 'mt', 'ribo', 'hb', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts', 'n_cells', 'highly_variable', 'means', 'dispersions', 'dispersions_norm', 'highly_variable_nbatches', 'highly_variable_intersection', 'mean', 'std'
uns: 'dendrogram_leiden_0.6', 'doublet_info_colors', 'hclust_10_colors', 'hclust_15_colors', 'hclust_5_colors', 'hvg', 'kmeans10_colors', 'kmeans15_colors', 'kmeans5_colors', 'leiden', 'leiden_0.4', 'leiden_0.4_colors', 'leiden_0.6', 'leiden_0.6_colors', 'leiden_1.0', 'leiden_1.0_colors', 'leiden_1.4', 'leiden_1.4_colors', 'log1p', 'neighbors', 'pca', 'phase_colors', 'sample_colors', 'tsne', 'umap'
obsm: 'Scanorama', 'X_pca', 'X_pca_combat', 'X_pca_harmony', 'X_tsne', 'X_tsne_bbknn', 'X_tsne_combat', 'X_tsne_harmony', 'X_tsne_scanorama', 'X_tsne_uncorr', 'X_umap', 'X_umap_bbknn', 'X_umap_combat', 'X_umap_harmony', 'X_umap_scanorama', 'X_umap_uncorr'
varm: 'PCs'
obsp: 'connectivities', 'distances'
'log1p']['base']=None
adata.uns[print(adata.shape)
# have only variable genes in X, use raw instead.
= adata.raw.to_adata()
adata print(adata.shape)
(7332, 3984)
(7332, 19468)
Subset one patient.
= adata[adata.obs["sample"] == "ctrl_13",:]
adata print(adata.shape)
(1154, 19468)
"leiden_0.6"].value_counts() adata.obs[
1 276
3 207
0 200
6 124
2 123
4 68
5 49
7 32
8 23
9 18
10 18
11 16
Name: leiden_0.6, dtype: int64
Some clusters have very few cells from this individual, so any cluster comparisons may be biased by this.
1 Reference data
Load the reference data from scanpy.datasets
. It is the annotated and processed pbmc3k dataset from 10x.
= sc.datasets.pbmc3k_processed()
adata_ref
'sample']='pbmc3k'
adata_ref.obs[
print(adata_ref.shape)
adata_ref.obs
try downloading from url
https://raw.githubusercontent.com/chanzuckerberg/cellxgene/main/example-dataset/pbmc3k.h5ad
... this may take a while but only happens once
(2638, 1838)
n_genes | percent_mito | n_counts | louvain | sample | |
---|---|---|---|---|---|
index | |||||
AAACATACAACCAC-1 | 781 | 0.030178 | 2419.0 | CD4 T cells | pbmc3k |
AAACATTGAGCTAC-1 | 1352 | 0.037936 | 4903.0 | B cells | pbmc3k |
AAACATTGATCAGC-1 | 1131 | 0.008897 | 3147.0 | CD4 T cells | pbmc3k |
AAACCGTGCTTCCG-1 | 960 | 0.017431 | 2639.0 | CD14+ Monocytes | pbmc3k |
AAACCGTGTATGCG-1 | 522 | 0.012245 | 980.0 | NK cells | pbmc3k |
... | ... | ... | ... | ... | ... |
TTTCGAACTCTCAT-1 | 1155 | 0.021104 | 3459.0 | CD14+ Monocytes | pbmc3k |
TTTCTACTGAGGCA-1 | 1227 | 0.009294 | 3443.0 | B cells | pbmc3k |
TTTCTACTTCCTCG-1 | 622 | 0.021971 | 1684.0 | B cells | pbmc3k |
TTTGCATGAGAGGC-1 | 454 | 0.020548 | 1022.0 | B cells | pbmc3k |
TTTGCATGCCTCAC-1 | 724 | 0.008065 | 1984.0 | CD4 T cells | pbmc3k |
2638 rows × 5 columns
As you can see, the celltype annotation is in the metadata column louvain
, so that is the column we will have to use for classification.
Make sure we have the same genes in both datset by taking the intersection
# before filtering genes, store the full matrix in raw.
= adata
adata.raw # also store the umap in a new slot as it will get overwritten
"X_umap_uncorr"] = adata.obsm["X_umap"]
adata.obsm[
print(adata_ref.shape[1])
print(adata.shape[1])
= adata_ref.var_names.intersection(adata.var_names)
var_names print(len(var_names))
= adata_ref[:, var_names]
adata_ref = adata[:, var_names] adata
1838
19468
1676
First we need to rerun pca and umap with the same gene set for both datasets.
sc.pp.pca(adata_ref)
sc.pp.neighbors(adata_ref)
sc.tl.umap(adata_ref)='louvain') sc.pl.umap(adata_ref, color
computing PCA
with n_comps=50
finished (0:00:07)
computing neighbors
using 'X_pca' with n_pcs = 50
finished (0:00:11)
computing UMAP
finished (0:00:04)
2 Integrate with scanorama
import scanorama
#subset the individual dataset to the same variable genes as in MNN-correct.
= dict()
alldata 'ctrl']=adata
alldata['ref']=adata_ref
alldata[
#convert to list of AnnData objects
= list(alldata.values())
adatas
# run scanorama.integrate
= 50) scanorama.integrate_scanpy(adatas, dimred
Found 1676 genes among all datasets
[[0. 0.42894281]
[0. 0. ]]
Processing datasets (0, 1)
# add in sample info
'sample']='pbmc3k'
adata_ref.obs[
# create a merged scanpy object and add in the scanorama
= alldata['ctrl'].concatenate(alldata['ref'], batch_key='sample', batch_categories=['ctrl','pbmc3k'])
adata_merged
= np.concatenate([ad.obsm['X_scanorama'] for ad in adatas], axis=0)
embedding 'Scanorama'] = embedding adata_merged.obsm[
#run umap.
=50, use_rep = "Scanorama")
sc.pp.neighbors(adata_merged, n_pcs sc.tl.umap(adata_merged)
computing neighbors
finished (0:00:00)
computing UMAP
finished (0:00:06)
2.1 Label transfer
Using the functions from the Spatial tutorial from Scanpy we will calculate normalized cosine distances between the two datasets and tranfer labels to the celltype with the highest scores.
from sklearn.metrics.pairwise import cosine_distances
= 1 - cosine_distances(
distances 'sample'] == "pbmc3k"].obsm["Scanorama"],
adata_merged[adata_merged.obs['sample'] == "ctrl"].obsm["Scanorama"],
adata_merged[adata_merged.obs[
)
def label_transfer(dist, labels, index):
= pd.get_dummies(labels)
lab = lab.to_numpy().T @ dist
class_prob = np.linalg.norm(class_prob, 2, axis=0)
norm = class_prob / norm
class_prob = (class_prob.T - class_prob.min(1)) / class_prob.ptp(1)
class_prob # convert to df
= pd.DataFrame(
cp_df =lab.columns
class_prob, columns
)= index
cp_df.index # classify as max score
= cp_df.idxmax(axis=1)
m
return m
= label_transfer(distances, adata_ref.obs.louvain, adata.obs.index)
class_def
# add to obs section of the original object
'label_trans'] = class_def
adata.obs[
="label_trans") sc.pl.umap(adata, color
# add to merged object.
"label_trans"] = pd.concat(
adata_merged.obs["louvain"]], axis=0
[class_def, adata_ref.obs[
).tolist()
=["sample","louvain",'label_trans'])
sc.pl.umap(adata_merged, color#plot only ctrl cells.
'sample']=='ctrl'], color='label_trans') sc.pl.umap(adata_merged[adata_merged.obs[
Now plot how many cells of each celltypes can be found in each cluster.
3 Ingest
Another method for celltype prediction is Ingest, for more information, please look at https://scanpy-tutorials.readthedocs.io/en/latest/integrating-data-using-ingest.html
='louvain')
sc.tl.ingest(adata, adata_ref, obs=['louvain','leiden_0.6'], wspace=0.5) sc.pl.umap(adata, color
running ingest
finished (0:00:24)
As you can see, ingest has created a new umap for us, so to get consistent plotting, lets revert back to the old one for further plotting:
"X_umap"] = adata.obsm["X_umap_uncorr"]
adata.obsm[
=['louvain','leiden_0.6'], wspace=0.5) sc.pl.umap(adata, color
Now plot how many cells of each celltypes can be found in each cluster.
4 Celltypist
Celltypist provides pretrained models for classification for many different human tissues and celltypes. Here, we are following the steps of this tutorial, with some adaptations for this dataset. So please check out the tutorial for more detail.
import celltypist
from celltypist import models
# there are many different models, we will only download 2 of them for now.
= False, model = 'Immune_All_Low.pkl')
models.download_models(force_update = False, model = 'Immune_All_High.pkl') models.download_models(force_update
Now select the model you want to use and show the info:
= models.Model.load(model = 'Immune_All_High.pkl')
model
model
CellTypist model with 32 cell types and 6639 features
date: 2022-07-16 08:53:00.959521
details: immune populations combined from 20 tissues of 18 studies
source: https://doi.org/10.1126/science.abl5197
version: v2
cell types: B cells, B-cell lineage, ..., pDC precursor
features: A1BG, A2M, ..., ZYX
To infer celltype labels to our cells, we first need to convert back to the full matrix. OBS! For celltypist we want to have log1p normalised expression to 10,000 counts per cell. Which we already have in adata.raw.X
, check by summing up the data, it should sum to 10K.
= adata.raw.to_adata()
adata sum(axis = 1)[:10] adata.X.expm1().
matrix([[10000.],
[10000.],
[10000.],
[10000.],
[10000.],
[10000.],
[10000.],
[10000.],
[10000.],
[10000.]])
= celltypist.annotate(adata, model = 'Immune_All_High.pkl', majority_voting = True)
predictions
predictions.predicted_labels
running Leiden clustering
finished (0:00:00)
predicted_labels | over_clustering | majority_voting | |
---|---|---|---|
AGGTCATGTGCGAACA-13-5 | T cells | 15 | T cells |
CCTATCGGTCCCTCAT-13-5 | ILC | 18 | ILC |
TCCTCCCTCGTTCATT-13-5 | HSC/MPP | 23 | ILC |
CAACCAATCATCTATC-13-5 | ILC | 18 | ILC |
TACGGTATCGGATTAC-13-5 | T cells | 5 | T cells |
... | ... | ... | ... |
TCCACCATCATAGCAC-13-5 | T cells | 15 | T cells |
GAGTTACAGTGAGTGC-13-5 | T cells | 11 | T cells |
ATCATTCAGGCTCACC-13-5 | Monocytes | 20 | Monocytes |
AGCCACGCAACCCTAA-13-5 | T cells | 0 | T cells |
CTACCTGGTCAGGAGT-13-5 | ILC | 32 | ILC |
1154 rows × 3 columns
The first column predicted_labels
is the predictions made for each individual cell, while majority_voting
is done for local subclusters, the clustering identities are in column over_clustering
.
Now we convert the predictions to an anndata object.
= predictions.to_adata()
adata
= ['leiden_0.6', 'predicted_labels', 'majority_voting'], legend_loc = 'on data') sc.pl.umap(adata, color
Rerun predictions with Celltypist, but use another model, for instance Immune_All_High.pkl
, or any other model you find relevant, you can find a list of models here. How do the results differ for you?
4.1 Celltypist custom model
We can also train our own model on any reference data that we want to use. In this case we will use the pbmc data in adata_ref
to train a model.
Celltypist requires the data to be in the format of log1p normalised expression to 10,000 counts per cell, we can check if that is the case for the object we have:
sum(axis = 1)[:10] adata_ref.raw.X.expm1().
matrix([[2419.],
[4903.],
[3147.],
[2639.],
[ 980.],
[2163.],
[2175.],
[2260.],
[1275.],
[1103.]], dtype=float32)
These should all sum up to 10K, which is not the case, probably since some genes were removed after normalizing. Wo we will have to start from the raw counts of that dataset instead. Before we selected the data pbmc3k_processed
, but now we will instead use pbmc3k
.
= sc.datasets.pbmc3k()
adata_ref2 adata_ref2
try downloading from url
https://falexwolf.de/data/pbmc3k_raw.h5ad
... this may take a while but only happens once
AnnData object with n_obs × n_vars = 2700 × 32738
var: 'gene_ids'
This data is not annotated, so we will have to match the indices from the filtered and processed object. And add in the metadata with annotations.
= adata_ref2[adata_ref.obs_names,:]
adata_ref2 = adata_ref.obs
adata_ref2.obs adata_ref2
AnnData object with n_obs × n_vars = 2638 × 32738
obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain', 'sample'
var: 'gene_ids'
Now we can normalize the matrix:
= 1e4)
sc.pp.normalize_total(adata_ref2, target_sum
sc.pp.log1p(adata_ref2)
# check the sums again
sum(axis = 1)[:10] adata_ref2.X.expm1().
normalizing counts per cell
finished (0:00:00)
matrix([[10000. ],
[10000. ],
[10000. ],
[ 9999.998],
[ 9999.998],
[10000. ],
[ 9999.999],
[10000. ],
[10000.001],
[10000. ]], dtype=float32)
And finally train the model.
= celltypist.train(adata_ref2, labels = 'louvain', n_jobs = 10, feature_selection = True) new_model
Now we can run predictions on our data
= celltypist.annotate(adata, model = new_model, majority_voting = True) predictions2
running Leiden clustering
finished (0:00:00)
Instead of converting the predictions to anndata we will just add another column in the adata.obs
with these new predictions since the column names from the previous celltypist runs with clash.
"predicted_labels_ref"] = predictions2.predicted_labels["predicted_labels"]
adata.obs["majority_voting_ref"] = predictions2.predicted_labels["majority_voting"] adata.obs[
5 Compare results
The predictions from ingest is stored in the column ‘louvain’ while we named the label transfer with scanorama as ‘predicted’
=['louvain','label_trans','majority_voting', 'majority_voting_ref'], wspace=0.5, ncols=3) sc.pl.umap(adata, color
As you can see, the main celltypes are generally the same, but there are clearly differences, especially with regards to the cells predicted as either ILC/NK/CD8 T-cells.
The only way to make sure which method you trust is to look at what genes the different celltypes express and use your biological knowledge to make decisions.
6 Gene set analysis
Another way of predicting celltypes is to use the differentially expressed genes per cluster and compare to lists of known cell marker genes. This requires a list of genes that you trust and that is relevant for the tissue you are working on.
You can either run it with a marker list from the ontology or a list of your choice as in the example below.
= 'data/human_cell_markers.txt'
path_file if not os.path.exists(path_file):
= os.path.join(path_data, "misc/human_cell_markers.txt")
file_url "curl", "-u", curl_upass, "-o", path_file, file_url ]) subprocess.call([
= pd.read_table(path_file)
df
df
print(df.shape)
(2868, 15)
# Filter for number of genes per celltype
'nG'] = df.geneSymbol.str.split(",").str.len()
df[
= df[df['nG'] > 5]
df = df[df['nG'] < 100]
df = df[df['cancerType'] == "Normal"]
d print(df.shape)
# convert to dict.
= df.cellName
df.index = df.geneSymbol.str.split(",").to_dict() gene_dict
(445, 16)
# run differential expression per cluster
'leiden_0.6', method='wilcoxon', key_added = "wilcoxon") sc.tl.rank_genes_groups(adata,
ranking genes
finished (0:00:01)
# do gene set overlap to the groups in the gene list and top 300 DEGs.
import gseapy
= dict()
gsea_res = dict()
pred
for cl in adata.obs['leiden_0.6'].cat.categories.tolist():
print(cl)
= sc.get.rank_genes_groups_df(adata, group=cl, key='wilcoxon')[
glist 'names'].squeeze().str.strip().tolist()
= gseapy.enrichr(gene_list=glist[:300],
enr_res ='Human',
organism=gene_dict,
gene_sets=adata.shape[1],
background=1)
cutoffif enr_res.results.shape[0] == 0:
= "Unass"
pred[cl] else:
enr_res.results.sort_values(="P-value", axis=0, ascending=True, inplace=True)
byprint(enr_res.results.head(2))
= enr_res
gsea_res[cl] = enr_res.results["Term"][0] pred[cl]
0
Gene_set Term Overlap P-value Adjusted P-value \
0 gs_ind_0 Cancer stem-like cell 1/6 0.088981 0.206048
5 gs_ind_0 Macrophage 1/6 0.088981 0.206048
Odds Ratio Combined Score Genes
0 17.450448 42.218477 ANPEP
5 17.450448 42.218477 AIF1
1
Gene_set Term Overlap P-value Adjusted P-value \
3 gs_ind_0 Parietal progenitor cell 1/7 0.103024 0.255621
0 gs_ind_0 Effector T cell 1/13 0.182865 0.255621
Odds Ratio Combined Score Genes
3 14.764993 33.557802 ANXA1
0 7.675392 13.040543 IL2RB
2
Gene_set Term Overlap P-value Adjusted P-value \
2 gs_ind_0 Effector memory T cell 1/7 0.103024 0.206048
5 gs_ind_0 Monocyte 1/7 0.103024 0.206048
Odds Ratio Combined Score Genes
2 14.764993 33.557802 IL7R
5 14.764993 33.557802 CD52
3
Gene_set Term Overlap P-value Adjusted P-value \
3 gs_ind_0 Effector memory T cell 1/7 0.103024 0.215807
5 gs_ind_0 Monocyte 1/7 0.103024 0.215807
Odds Ratio Combined Score Genes
3 14.764993 33.557802 IL7R
5 14.764993 33.557802 CD52
4
Gene_set Term Overlap P-value Adjusted P-value Odds Ratio \
2 gs_ind_0 Monocyte 1/7 0.103024 0.116851 14.764993
0 gs_ind_0 CD4-CD28+ T cell 1/8 0.116851 0.116851 12.795659
Combined Score Genes
2 33.557802 CD52
0 27.470422 BCL2
5
Gene_set Term Overlap P-value Adjusted P-value \
1 gs_ind_0 Cancer stem-like cell 1/6 0.088981 0.203113
21 gs_ind_0 Spermatogonial stem cell 1/6 0.088981 0.203113
Odds Ratio Combined Score Genes
1 17.450448 42.218477 ANPEP
21 17.450448 42.218477 BCL6
6
Gene_set Term Overlap P-value \
1 gs_ind_0 Macrophage 1/6 0.088981
2 gs_ind_0 Monocyte derived dendritic cell 1/8 0.116851
Adjusted P-value Odds Ratio Combined Score Genes
1 0.175277 17.450448 42.218477 AIF1
2 0.175277 12.795659 27.470422 ITGAX
7
Gene_set Term Overlap P-value Adjusted P-value Odds Ratio \
0 gs_ind_0 B cell 1/6 0.088981 0.116851 17.450448
2 gs_ind_0 Monocyte 1/7 0.103024 0.116851 14.764993
Combined Score Genes
0 42.218477 CD19
2 33.557802 CD52
8
Gene_set Term Overlap P-value Adjusted P-value Odds Ratio \
2 gs_ind_0 Macrophage 1/6 0.088981 0.154536 17.450448
4 gs_ind_0 Myeloblast 1/6 0.088981 0.154536 17.450448
Combined Score Genes
2 42.218477 AIF1
4 42.218477 CSF3R
9
Gene_set Term Overlap P-value Adjusted P-value Odds Ratio \
4 gs_ind_0 T helper cell 1/10 0.143872 0.319526 10.100782
1 gs_ind_0 Effector T cell 1/13 0.182865 0.319526 7.675392
Combined Score Genes
4 19.583741 ABCB1
1 13.040543 IL2RB
10
Gene_set Term Overlap P-value \
1 gs_ind_0 PROM1Low progenitor cell 1/7 0.103024
0 gs_ind_0 Myeloid conventional dendritic cell 1/17 0.232116
Adjusted P-value Odds Ratio Combined Score Genes
1 0.206048 14.764993 33.557802 ALCAM
0 0.232116 5.813477 8.490677 CD1C
11
Gene_set Term Overlap P-value \
1 gs_ind_0 Cancer stem-like cell 1/6 0.088981
16 gs_ind_0 Myeloid-derived suppressor cell 1/6 0.088981
Adjusted P-value Odds Ratio Combined Score Genes
1 0.191829 17.450448 42.218477 ANPEP
16 0.191829 17.450448 42.218477 ITGAM
# prediction per cluster
pred
{'0': 'Cancer stem-like cell',
'1': 'Effector T cell',
'2': 'CD4+ T cell',
'3': 'CD4+ T cell',
'4': 'CD4-CD28+ T cell',
'5': 'CD16+ dendritic cell',
'6': 'Conventional dendritic cell',
'7': 'B cell',
'8': 'Immune cell',
'9': 'Circulating fetal cell',
'10': 'Myeloid conventional dendritic cell',
'11': 'CD16+ dendritic cell'}
= [pred[x] for x in adata.obs['leiden_0.6']]
prediction "GS_overlap_pred"] = prediction
adata.obs[
='GS_overlap_pred') sc.pl.umap(adata, color
As you can see, it agrees to some extent with the predictions from the methods above, but there are clear differences, which do you think looks better?
7 Save data
We can finally save the object for use in future steps.
'data/covid/results/scanpy_covid_qc_dr_int_cl_ct-ctrl13.h5ad') adata.write_h5ad(
8 Session info
Click here
sc.logging.print_versions()
-----
anndata 0.10.8
scanpy 1.10.3
-----
PIL 11.1.0
annoy NA
array_api_compat 1.10.0
asttokens NA
brotli 1.1.0
celltypist 1.6.3
certifi 2024.12.14
cffi 1.17.1
charset_normalizer 3.4.1
colorama 0.4.6
comm 0.2.2
cycler 0.12.1
cython_runtime NA
dateutil 2.9.0.post0
debugpy 1.8.12
decorator 5.1.1
exceptiongroup 1.2.2
executing 2.1.0
fbpca NA
gseapy 1.1.3
h5py 3.12.1
idna 3.10
igraph 0.11.6
intervaltree NA
ipykernel 6.29.5
jedi 0.19.2
joblib 1.4.2
kiwisolver 1.4.7
legacy_api_wrap NA
leidenalg 0.10.2
llvmlite 0.43.0
matplotlib 3.9.2
matplotlib_inline 0.1.7
mpl_toolkits NA
natsort 8.4.0
numba 0.60.0
numpy 1.26.4
packaging 24.2
pandas 1.5.3
parso 0.8.4
patsy 1.0.1
pickleshare 0.7.5
platformdirs 4.3.6
prompt_toolkit 3.0.50
psutil 6.1.1
pure_eval 0.2.3
pycparser 2.22
pydev_ipython NA
pydevconsole NA
pydevd 3.2.3
pydevd_file_utils NA
pydevd_plugins NA
pydevd_tracing NA
pygments 2.19.1
pynndescent 0.5.13
pyparsing 3.2.1
pytz 2024.2
requests 2.32.3
scanorama 1.7.4
scipy 1.14.1
session_info 1.0.0
six 1.17.0
sklearn 1.6.1
socks 1.7.1
sortedcontainers 2.4.0
sparse 0.15.5
stack_data 0.6.3
statsmodels 0.14.4
texttable 1.7.0
threadpoolctl 3.5.0
torch 2.5.1.post207
torchgen NA
tornado 6.4.2
tqdm 4.67.1
traitlets 5.14.3
typing_extensions NA
umap 0.5.7
urllib3 2.3.0
wcwidth 0.2.13
yaml 6.0.2
zmq 26.2.0
zoneinfo NA
zstandard 0.23.0
-----
IPython 8.31.0
jupyter_client 8.6.3
jupyter_core 5.7.2
-----
Python 3.10.16 | packaged by conda-forge | (main, Dec 5 2024, 14:16:10) [GCC 13.3.0]
Linux-6.10.14-linuxkit-x86_64-with-glibc2.35
-----
Session information updated at 2025-03-26 08:38