A data set that have more than one dimension is conceptually hard to store as a vector. For two-dimensional data set the solution to this is to instead use matrices or data frames. As with vectors all values in a matrix has to be of the same type (eg. you can not mix for example characters and numerics in the same matrix). For data frames this is not a requirement and different columns can have different modes, but all columns in a data frame have the same number of entries. In addition to these R also have objects named lists that can store any type of data set and are not restricted by types or dimensions.
In this exercise you will learn how to:
The command to create a matrix in R is matrix().
As input it takes a vector of values, the number of
rows and the number of columns.
X <- matrix(1:12, nrow = 4, ncol = 3)
X
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
Note that if one only specify the number of rows or columns the it will infer the size of the matrix automatically using the size of vector and the option given. The default way of filling the matrix is column-wise, so the first values from the vector ends up in column 1 of the matrix. If you instead wants to fill the matrix row by row you can set the byrow flag to TRUE.
X <- matrix(1:12, nrow = 4, ncol = 3, byrow = TRUE)
X
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
Subsetting a matrix is done the same way as for vectors, but you have more than one dimension to work with. So you specify the rows and column needed.
X[1,2]
[1] 2
If one wants all values in a column or a row this can be specified by leaving the other dimension empty, hence this code will print all values in the second column.
X[,2]
[1] 2 5 8 11
Note that if the retrieved part of a matrix can be represented as a vector (eg one of the dimension have the length 1) R will convert it to a vector otherwise it will still be a matrix.
Create a matrix containing 1:12 as shown for the matrix X above.
mode(X)
length(X)
[1] "numeric"
[1] 12
X[X>6]
[1] 7 10 8 11 9 12
X[,c(3,2,1)]
[,1] [,2] [,3]
[1,] 3 2 1
[2,] 6 5 4
[3,] 9 8 7
[4,] 12 11 10
Add a vector with three zeros as a fifth row to the matrix
X.2 <- rbind(X, rep(0, 3))
X.2
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
[5,] 0 0 0
X[,1:2] <- NA
X
[,1] [,2] [,3]
[1,] NA NA 3
[2,] NA NA 6
[3,] NA NA 9
[4,] NA NA 12
X[] <- 0
as.vector(X)
[1] 0 0 0 0 0 0 0 0 0 0 0 0
letnum <- outer(paste("Geno",letters[1:19], sep = "_"), 1:3, paste, sep = "_")
class(letnum)
sort(as.vector(letnum))
#sort(paste("Geno", as.vector(letnum), sep = "_"))
[1] "matrix"
[1] "Geno_a_1" "Geno_a_2" "Geno_a_3" "Geno_b_1" "Geno_b_2" "Geno_b_3"
[7] "Geno_c_1" "Geno_c_2" "Geno_c_3" "Geno_d_1" "Geno_d_2" "Geno_d_3"
[13] "Geno_e_1" "Geno_e_2" "Geno_e_3" "Geno_f_1" "Geno_f_2" "Geno_f_3"
[19] "Geno_g_1" "Geno_g_2" "Geno_g_3" "Geno_h_1" "Geno_h_2" "Geno_h_3"
[25] "Geno_i_1" "Geno_i_2" "Geno_i_3" "Geno_j_1" "Geno_j_2" "Geno_j_3"
[31] "Geno_k_1" "Geno_k_2" "Geno_k_3" "Geno_l_1" "Geno_l_2" "Geno_l_3"
[37] "Geno_m_1" "Geno_m_2" "Geno_m_3" "Geno_n_1" "Geno_n_2" "Geno_n_3"
[43] "Geno_o_1" "Geno_o_2" "Geno_o_3" "Geno_p_1" "Geno_p_2" "Geno_p_3"
[49] "Geno_q_1" "Geno_q_2" "Geno_q_3" "Geno_r_1" "Geno_r_2" "Geno_r_3"
[55] "Geno_s_1" "Geno_s_2" "Geno_s_3"
A <- matrix(1:4, ncol = 2, nrow = 2)
B <- matrix(5:8, ncol = 2, nrow = 2)
A
[,1] [,2]
[1,] 1 3
[2,] 2 4
B
[,1] [,2]
[1,] 5 7
[2,] 6 8
A * B
[,1] [,2]
[1,] 5 21
[2,] 12 32
A / B
[,1] [,2]
[1,] 0.2000000 0.4285714
[2,] 0.3333333 0.5000000
A %x% B
[,1] [,2] [,3] [,4]
[1,] 5 7 15 21
[2,] 6 8 18 24
[3,] 10 14 20 28
[4,] 12 16 24 32
A + B
[,1] [,2]
[1,] 6 10
[2,] 8 12
A - B
[,1] [,2]
[1,] -4 -4
[2,] -4 -4
A == B
[,1] [,2]
[1,] FALSE FALSE
[2,] FALSE FALSE
e <- rnorm(n = 100)
E <- matrix(e, nrow = 10, ncol = 10)
colnames(E) <- LETTERS[1:10]
rownames(E) <- colnames(E)
E.means <- rowMeans(E)
E.medians <- apply(E, MARGIN = 1, median)
E.mm <- rbind(E.means, E.medians)
E.mm
A B C D E F
E.means -0.01902767 0.01075332 -0.4137270 -0.1304978 0.2099126 0.2965743
E.medians 0.53337938 0.18481261 -0.2248858 -0.1139851 0.3269634 0.2601974
G H I J
E.means -0.6670421 -0.27378920 -0.1533350 -0.0437610
E.medians -0.5247300 -0.09460231 -0.3547495 -0.2493248
Even though vectors are at the very base of R usage, data frames are
central to R as the most common ways to import data into R
(read.table) will create a data frame. Even though a data frame can
itself contain another data frame, the by far, most common data frames
consists of a set of equally long vectors. As data frames can contain
several different data types the command str()
is very useful to run on data frames
vector1 <- 1:10
vector2 <- letters[1:10]
vector3 <- rnorm(10, sd = 10)
df <- data.frame(vector1, vector2, vector3)
str(df)
'data.frame': 10 obs. of 3 variables:
$ vector1: int 1 2 3 4 5 6 7 8 9 10
$ vector2: Factor w/ 10 levels "a","b","c","d",..: 1 2 3 4 5 6 7 8 9 10
$ vector3: num 8.463 0.905 -0.255 -6.59 3.369 ...
In the above example we can see that the data frame df contains 10 observations for three variables that all have different modes, column 1 is an integer vector, column 2 a vector with factors! and column 3 a numeric vector. It is noteworthy that the second column is a factor even though we just gave it a character vector.
df <- data.frame(vector1, vector2, vector3, stringsAsFactors = FALSE)
str(df)
'data.frame': 10 obs. of 3 variables:
$ vector1: int 1 2 3 4 5 6 7 8 9 10
$ vector2: chr "a" "b" "c" "d" ...
$ vector3: num 8.463 0.905 -0.255 -6.59 3.369 ...
df[,2:3]
df[,c("vector2", "vector3")]
vector2 vector3
1 a 8.4628687
2 b 0.9046253
3 c -0.2549117
4 d -6.5902581
5 e 3.3685362
6 f 16.7773472
7 g 9.3203649
8 h -10.4333097
9 i 2.9716131
10 j 8.1402695
vector2 vector3
1 a 8.4628687
2 b 0.9046253
3 c -0.2549117
4 d -6.5902581
5 e 3.3685362
6 f 16.7773472
7 g 9.3203649
8 h -10.4333097
9 i 2.9716131
10 j 8.1402695
df[df$vector3>0,2]
df$vector2[df$vector3>0]
[1] "a" "b" "e" "f" "g" "i" "j"
[1] "a" "b" "e" "f" "g" "i" "j"
paste(df$vector1, df$vector2, df$vector3, sep = "_")
[1] "1_a_8.46286871843976" "2_b_0.904625308313597" "3_c_-0.25491171338376"
[4] "4_d_-6.59025808447186" "5_e_3.36853617579661" "6_f_16.7773472039123"
[7] "7_g_9.32036493453533" "8_h_-10.4333097064694" "9_i_2.97161306345798"
[10] "10_j_8.14026953369552"
mtcars.
mtcars
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
car.names <- sample(row.names(mtcars))
random1 <- rnorm(length(car.names))
random2 <- rnorm(length(car.names))
mtcars2 <- data.frame(car.names, random1, random2)
mtcars2
car.names random1 random2
1 Toyota Corona 0.2672093 0.748625274
2 Duster 360 -0.4127061 -0.289656962
3 Hornet Sportabout -0.6291955 1.154517511
4 Volvo 142E 1.4695465 1.822855299
5 Lotus Europa -0.1088715 -0.688590021
6 Hornet 4 Drive -0.4359612 -0.274399856
7 Valiant -0.9114306 -0.552239587
8 Merc 450SLC 0.1083370 0.212631221
9 Fiat X1-9 -0.3422226 -1.991076826
10 Cadillac Fleetwood 0.4657490 0.779438149
11 Toyota Corolla 1.1136944 -0.949605064
12 Mazda RX4 Wag -0.6442193 -0.353000665
13 Ferrari Dino 0.7393240 -0.157842460
14 Mazda RX4 -0.0431834 1.428955430
15 Datsun 710 1.1788716 -0.056881290
16 Merc 280 0.8434795 -1.676932154
17 Fiat 128 0.5203762 -1.540330757
18 Merc 450SE -0.6783654 -1.088913643
19 Honda Civic 0.9413628 -0.689011222
20 Porsche 914-2 -1.7112856 -0.279261819
21 Pontiac Firebird 0.7238131 0.980874293
22 Merc 230 0.4692142 0.417665142
23 Maserati Bora -0.6522722 0.394803085
24 Lincoln Continental 1.3341690 -0.008482409
25 Chrysler Imperial -1.7568138 0.231171108
26 AMC Javelin -0.3436457 -0.801661343
27 Dodge Challenger 0.9847896 0.240541233
28 Ford Pantera L 0.1812936 -2.391389388
29 Camaro Z28 0.2731022 -0.562270119
30 Merc 240D -1.3300011 0.941390495
31 Merc 280C -0.1134380 -1.051899224
32 Merc 450SL 1.0369179 -0.256698993
mt.merged <- merge(mtcars, mtcars2, by.x = "row.names", by.y = "car.names")
mt.merged
Row.names mpg cyl disp hp drat wt qsec vs am gear carb
1 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
2 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
3 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
5 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
6 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
7 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
8 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
9 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
10 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
11 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
12 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
13 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
14 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
15 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
16 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
17 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
18 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
19 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
20 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
21 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
22 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
23 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
24 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
25 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
26 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
27 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
28 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
29 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
30 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
31 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
32 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
random1 random2
1 -0.3436457 -0.801661343
2 0.4657490 0.779438149
3 0.2731022 -0.562270119
4 -1.7568138 0.231171108
5 1.1788716 -0.056881290
6 0.9847896 0.240541233
7 -0.4127061 -0.289656962
8 0.7393240 -0.157842460
9 0.5203762 -1.540330757
10 -0.3422226 -1.991076826
11 0.1812936 -2.391389388
12 0.9413628 -0.689011222
13 -0.4359612 -0.274399856
14 -0.6291955 1.154517511
15 1.3341690 -0.008482409
16 -0.1088715 -0.688590021
17 -0.6522722 0.394803085
18 -0.0431834 1.428955430
19 -0.6442193 -0.353000665
20 0.4692142 0.417665142
21 -1.3300011 0.941390495
22 0.8434795 -1.676932154
23 -0.1134380 -1.051899224
24 -0.6783654 -1.088913643
25 1.0369179 -0.256698993
26 0.1083370 0.212631221
27 0.7238131 0.980874293
28 -1.7112856 -0.279261819
29 1.1136944 -0.949605064
30 0.2672093 0.748625274
31 -0.9114306 -0.552239587
32 1.4695465 1.822855299
colMeans(mtcars2[, c("random1", "random2")])
random1 random2
0.07930118 -0.19708361
Try to modify so you get the mean by cylinder number instead.
aggregate(mtcars2$random1, by = list(mtcars$cyl), FUN = mean)
Group.1 x
1 4 0.02470902
2 6 0.16250439
3 8 0.08059342
mtcars$cyl mtcars2$ex1
1 4 -0.31758135
2 6 -0.31712091
3 8 0.01378375
The last data structure that we will explore are lists, which is a very flexible structure. Lists can i R combine different data structures and they do not have to be of equal dimensions or have other restrictions. The drawback with a flexible structure is that it requires a bit more work to interact with.
The syntax to create a list is similar to creation of the other data structures in R.
l <- list(1, 2, 3)
As with the data frames the str() command is very useful for the sometimes fairly complex lists instances.
str(l)
List of 3
$ : num 1
$ : num 2
$ : num 3
This example containing only numeric vector is not very exciting example given the flebility a list structure offers so lets create a more complex example
vec1 <- letters
vec2 <- 1:4
mat1 <- matrix(1:100, nrow = 5)
df1 <- as.data.frame(cbind(10:1, 91:100))
u.2 <- list(vec1, vec2, mat1, df1, l)
As you can see a list can not only contain other data structures, but can also contain other lists.
Looking at the str command reveals much of the details of a list
str(u.2)
List of 5
$ : chr [1:26] "a" "b" "c" "d" ...
$ : int [1:4] 1 2 3 4
$ : int [1:5, 1:20] 1 2 3 4 5 6 7 8 9 10 ...
$ :'data.frame': 10 obs. of 2 variables:
..$ V1: int [1:10] 10 9 8 7 6 5 4 3 2 1
..$ V2: int [1:10] 91 92 93 94 95 96 97 98 99 100
$ :List of 3
..$ : num 1
..$ : num 2
..$ : num 3
With this more complex object subsetting are slighty trickier than with more the more homogenous objects we have looked at so far.
To look at the first entry of a list one can use the same syntax as for the simplier structures, but note that this will give you a list of length 1 irrespective of the actual type of data structure found.
u.2[1]
str(u.2[1])
[[1]]
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
List of 1
$ : chr [1:26] "a" "b" "c" "d" ...
If one instead wants to extract the list entry as the structure that is stored, one needs to “dig” deeper in the object.
u.2[[1]]
str(u.2[[1]])
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
chr [1:26] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" ...
This means that the syntax to extract to exact specific value from a data structure stored in a list can be daunting, examplified by extracting the second column of the data fram stored at position 4 in the list u.2.
u.2[[4]][,2]
[1] 91 92 93 94 95 96 97 98 99 100
list.2 <- list(vec1 = c("hi", "ho", "merry", "christmas"), vec2 = 4:19, mat1 = matrix(as.character(100:81), nrow = 4))
list.2
$vec1
[1] "hi" "ho" "merry" "christmas"
$vec2
[1] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
$mat1
[,1] [,2] [,3] [,4] [,5]
[1,] 100 96 92 88 84
[2,] 99 95 91 87 83
[3,] 98 94 90 86 82
[4,] 97 93 89 85 81
df <- data.frame(letters, LETTERS, letters == LETTERS)
list.2[[4]] <- df
list.2[-2]
$vec1
[1] "hi" "ho" "merry" "christmas"
$mat1
[,1] [,2] [,3] [,4] [,5]
[1,] 100 96 92 88 84
[2,] 99 95 91 87 83
[3,] 98 94 90 86 82
[4,] 97 93 89 85 81
[[3]]
letters LETTERS letters....LETTERS
1 a A FALSE
2 b B FALSE
3 c C FALSE
4 d D FALSE
5 e E FALSE
6 f F FALSE
7 g G FALSE
8 h H FALSE
9 i I FALSE
10 j J FALSE
11 k K FALSE
12 l L FALSE
13 m M FALSE
14 n N FALSE
15 o O FALSE
16 p P FALSE
17 q Q FALSE
18 r R FALSE
19 s S FALSE
20 t T FALSE
21 u U FALSE
22 v V FALSE
23 w W FALSE
24 x X FALSE
25 y Y FALSE
26 z Z FALSE
vec1 <- rnorm(1000)
list.a <- split(vec1, 1:20)
length(list.a)
lapply(list.a, FUN = "length")
[1] 20
$`1`
[1] 50
$`2`
[1] 50
$`3`
[1] 50
$`4`
[1] 50
$`5`
[1] 50
$`6`
[1] 50
$`7`
[1] 50
$`8`
[1] 50
$`9`
[1] 50
$`10`
[1] 50
$`11`
[1] 50
$`12`
[1] 50
$`13`
[1] 50
$`14`
[1] 50
$`15`
[1] 50
$`16`
[1] 50
$`17`
[1] 50
$`18`
[1] 50
$`19`
[1] 50
$`20`
[1] 50
Figure out what the main differences are between the function lapply and sapply are and use both of them with the function summary on your newly created list. What are the pros and cons of the two approaches to calculate the same summary statistics?
lapply(X = list.a, FUN = "summary")
sapply(X = list.a, FUN = "summary")
$`1`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.91700 -0.98430 -0.10330 -0.09407 0.64310 2.57300
$`2`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.55600 -0.59190 0.06890 0.09146 0.98040 2.40500
$`3`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.7200 -0.2922 0.3422 0.4497 1.0440 3.4580
$`4`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.65400 -0.77660 -0.06379 0.05182 0.68320 2.72800
$`5`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.11200 -0.67370 0.09657 0.08760 0.78310 2.42000
$`6`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.3730 -1.1960 -0.1069 -0.1600 0.7839 2.5650
$`7`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.08900 -0.84710 -0.31490 -0.25480 0.03034 1.86400
$`8`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.13100 -0.74770 0.25510 -0.03403 0.75410 1.98000
$`9`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.58600 -0.36920 0.02267 0.10700 0.48530 2.19900
$`10`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.0500 -1.0210 -0.4427 -0.2017 0.5982 2.4700
$`11`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.00300 -0.65670 -0.02114 0.04536 0.54900 2.47800
$`12`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.08200 -0.76080 -0.17120 -0.09029 0.36670 2.58100
$`13`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.42300 -0.66920 0.02297 -0.01248 0.63560 2.35000
$`14`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.18400 -0.99050 -0.06705 -0.18770 0.43920 2.40500
$`15`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.194000 -0.638600 0.090650 -0.006298 0.599600 2.537000
$`16`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.9650 -0.8252 -0.1867 -0.1255 0.4426 2.4360
$`17`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.5890 -0.8900 -0.3218 -0.3507 0.3900 1.8250
$`18`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.17500 -0.52770 0.05985 -0.07110 0.41190 1.66200
$`19`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.42600 -0.65740 0.06455 0.02680 0.48520 2.75000
$`20`
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.5350 -0.4091 0.2411 0.1381 0.6583 2.7100
1 2 3 4 5 6 7 8
Min. -1.91700 -2.55600 -1.7200 -1.65400 -2.11200 -2.3730 -2.08900 -3.13100
1st Qu. -0.98430 -0.59190 -0.2922 -0.77660 -0.67370 -1.1960 -0.84710 -0.74770
Median -0.10330 0.06890 0.3422 -0.06379 0.09657 -0.1069 -0.31490 0.25510
Mean -0.09407 0.09146 0.4497 0.05182 0.08760 -0.1600 -0.25480 -0.03403
3rd Qu. 0.64310 0.98040 1.0440 0.68320 0.78310 0.7839 0.03034 0.75410
Max. 2.57300 2.40500 3.4580 2.72800 2.42000 2.5650 1.86400 1.98000
9 10 11 12 13 14 15 16
Min. -2.58600 -2.0500 -2.00300 -2.08200 -2.42300 -2.18400 -2.194000 -1.9650
1st Qu. -0.36920 -1.0210 -0.65670 -0.76080 -0.66920 -0.99050 -0.638600 -0.8252
Median 0.02267 -0.4427 -0.02114 -0.17120 0.02297 -0.06705 0.090650 -0.1867
Mean 0.10700 -0.2017 0.04536 -0.09029 -0.01248 -0.18770 -0.006298 -0.1255
3rd Qu. 0.48530 0.5982 0.54900 0.36670 0.63560 0.43920 0.599600 0.4426
Max. 2.19900 2.4700 2.47800 2.58100 2.35000 2.40500 2.537000 2.4360
17 18 19 20
Min. -2.5890 -2.17500 -2.42600 -2.5350
1st Qu. -0.8900 -0.52770 -0.65740 -0.4091
Median -0.3218 0.05985 0.06455 0.2411
Mean -0.3507 -0.07110 0.02680 0.1381
3rd Qu. 0.3900 0.41190 0.48520 0.6583
Max. 1.8250 1.66200 2.75000 2.7100
Create this hypethetical S3 object in R.