Course schedule

This page is under update.

- lecture; - hands-on workshop; - break

Before the course
Day 1

09.00 - 10.15 Introduction ad setup (Sergiu, html, notebook)

10.15 - 10.30 Break

10.30 - 10.15 Jupyter (Sergiu, jupter)

10.15 - 11.00 Python tutorial (Sergiu, tutorial)

11.00 - 11.05 short Break

11.05 - 12.00 Python, data sciene (Sergiu, tutorial)

12.00 - 13.00 Lunch

13.00 - 13.45 Visualization (Sergiu, tutorial)

13.45 - 14.30 Scientific computing (Sergiu, tutorial)

14.30 - 14.45 Break

14.45 - 15.20 Statistics (Sergiu, tutorial)

15.20 - 16.00 Optimization (Sergiu, tutorial)



09.00 - 09.20 Intro to data science (Sergiu, html, notebook)

09.20 - 09.55 Dimension Reduction: (Sergiu, What is Python?)

09.55 - 10.05 Break

10.05 - 10.15 Clustering: (Sergiu, jupter)

10.15 - 10.55 Regression: (Sergiu, tutorial)

10.55 - 11.05 short Break

11.05 - 12.00 Classification: (Sergiu, tutorial)

12.00 - 13.00 Lunch

13.00 - 13.45 Data integration: (Sergiu, tutorial)

13.45 - 14.45 Deep learning (Sergiu, tutorial)

14.45 - 15.00 Break

15.00 - 15.50 Statistical learning (Sergiu, tutorial)

15.50 - 16.00 Questions (Sergiu, tutorial)



Day 3

09.00 - 09.30 Biological data engineering (Sergiu, tutorial)

09.30 - 10.00 DevOps (Sergiu, tutorial)

10.00 - 10.10 Break

10.10 - 11.10 Workflow management (Sergiu, tutorial)

11.10 - 11.20 Break

11.20 - 12.00 Grid Computing (Sergiu, tutorial) #review

12.00 - 13.00 Lunch

13.00 - 14.00 Distributed computing (Sergiu, tutorial)

14.00 - 14.10 Break

14.10 - 14.45 AWS (Sergiu, tutorial)

14.45 - 14.50 Break

14.50 - 15.45 acceleration (Sergiu, tutorial)



Day 4

09.00 -1600 Task Day (Sergiu, slides)



Day 5

Free day



Teachers:

Teaching assistants: