Unsupervised OMICs Integration
OMICs Integration and Systems Biology course
Nikolay Oskolkov, NBIS SciLifeLab
Lund, 6.09.2021

Find Something in My Data

SciLifeLab

Fishing expedition

- I do not understand your biological hypothesis
- I do not have any

Home About Articles Submission Guidelines

Editorial | Open Access | Published: 03 September 2020

A hypothesis is a liability

Itai Yanai $\boxtimes \&$ Martin Lercher \boxtimes
Genome Biology 21, Article number: 231 (2020) | Cite this article
12k Accesses | $\mathbf{6 1 9}$ Altmetric \mid Metrics
" 'When someone seeks,' said Siddhartha, 'then it easily happens that his eyes see only the thing that he seeks, and he is able to find nothing, to take in nothing. [...] Seeking means: having a goal. But finding means: being free, being open, having no goal.' "Hermann Hesse

There is a hidden cost to having a hypothesis. It arises from the relationship between night science and day science, the two very distinct modes of activity in which scientific ideas are generated and tested, respectively $[1,2]$. With a hypothesis in hand, the impressive strengths of day science are unleashed, guiding us in designing tests, estimating parameters, and throwing out the hypothesis if it fails the tests. But when we analyze the results of an experiment, our mental focus on a specific hypothesis can prevent us from exploring other aspects of the data, effectively blinding us to new ideas. A hypothesis then becomes a liability for any night science explorations. The corresponding limitations on our creativity, selfimposed in hypothesis-driven research, are of particular concern in the context of modern biological datasets, which are often vast and likely to contain hints at multiple distinct and potentially exciting discoveries. Night science has its own liability though, generating many spurious relationships and false hypotheses. Fortunately, these are exposed by the light of day science, emphasizing the complementarity of the two modes, where each overcomes the
a

b

	Gorilla not discovered	Gorilla discovered
Hypothesis-focused	14	5
Hypothesis-free	5	9

a An artificial dataset given to students with and without explicit hypotheses on the relationship between BMI and the steps taken on a particular day, for men and women. b A plot of the dataset. c The contingency table for students in the two groups ("hypothesis-focused," "hypothesis-free") that discovered the gorilla or not [6]

Step 1: train a MOFA model

Step 2: downstream analysis

Annotation of factors
Inspection of loadings Feature set enrichment analysis
Cene expression
Cell cycle
Factors

Imputation of missing values
Inspection of factors

- Visualisation of samples in factor space
- Annotation of factors using (gene set) enrichment analysis
- Imputation of missing values
- Support of OMICs with non-Gaussian distribution including binary and count data

b
Patients missing all measurements

Bayesian framework is insensitive to missing data, priors compensate for the lack of data

scNMT Data Set: scRNAseq + scBSseq + scATACseq

SciLifeLab

ARTICLE
DOI: 10.1038/s41467-018-03149-4
OPEN
scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells

Stephen J. Clark© 1, Ricard Argelaguet ${ }^{2,3}$, Chantriolnt-Andreas Kapourani© ${ }^{4}$ Thomas M. Stubbs ${ }^{1}$, Heather J. Lee ${ }^{1,5,6}$, Celia Alda-Catalinas© ${ }^{1}$, Felix Krueger© ${ }^{7}$ Guido Sanguinetti ${ }^{4}$, Gavin Kelsey© ${ }^{1,8}$ John C. Marioni© ${ }^{2,3,5}$ Oliver Stegle © ${ }^{2}$ Wolf Reik ${ }^{1,5,8}$

Parallel single-cell sequencing protocols represent powerful methods for investigating reg. ulatory relationships, including epigenome-transcriptome interactions. Here, we report a single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem cells, finding links between all three molecular layers and revealing dynamic coupling between epigenomic layers during differentiation.

scNMT Data Set: Distributions
SciLifeLab

scNMT Data Set: Summary Stats

SciLifeLab

Samples ($n=113$)

Bayesian framework of MOFA allows to explicitly model non-Gaussian distributions via Bayes rule

library("MOFA")

omics<-list(scRNAseq $=$ sCRNAseq, sCBSseq $=$ sCBSseq, sCATACseq $=$ sCATACseq) MOFAobject <- createMOFAobject(omics)
plotDataOverview(MOFAobject)
Dataoptions <- getDefaultDataoptions()
Modeloptions <- getDefaultModeloptions(MOFAobject)
mydistr <- c("gaussian", "bernoulli", "bernoulli")
names(mydistr) <- c("scRNAseq", "scBSseq", "scATACseq")
Modeloptions\$likelihood <- mydistr
Modeloptions $\$$ numFactors <- 20
Trainoptions <- getDefaultTrainoptions()
12 Trainoptions\$seed <- 2018
13 \# Automatically drop factors that explain less than 3% of variance in all omics
14 Trainoptions\$DropFactorThreshold <- 0.03
5 Trainoptions\$tolerance <- 0.1; Trainoptions\$maxiter <- 1000

Total variance explained per view

MOFA: Interpretation of Factors

Rank position

ESC and EB cells are separable on the heatmap built on loadings of the MOFA latent factors

NB8 mofa for scOmics Integration: 10x рвмс SciLifeLab

SciLifeLab

Other Unsupervised Integrative OMICs Methods

Clustering of Clusters

SciLifeLab

Figure 2. Clustering of clusters. This kind of methods first clusters in every single omics dataset and then integrates the primary clustering results into final cluster assignments.

ScillifeLab
a

d

Wang, B., Mezlini, A., Demir, F. et al. . Nat Methods 11, 333-337 (2014)

Graph-Based OMICs Integration

Let S be a set and $F=\left\{S_{1}, \ldots, S_{p}\right\}$ a nonempty family of distinct nonempty subsets of S whose union is $\bigcup_{=1} S_{i}=S$. The intersection graph of F is denoted $\Omega(F)$ and defined by $V(\Omega(F))=F$, with S_{i} and S_{j} adjacent whenever $i \neq j$ and $S_{i} \cap S_{j} \neq \emptyset$. Then a graph G is an intersection graph on S if there exists a family F of subsets for which G and $\Omega(F)$ are isomorphic graphs (Harary 1994, p. 19). Graph intersections can be computed in the Wolfram Languag
using GraphIntersection[g. h].

UMAP for Omics Integration

UMAP: scRNAseq + scProteomics
AP1

UMAP1

Autoencoder for Single Cell

SciLifeLab

Autoencoder

Unsupervised
Artificial Neural Network

Single Cell Analysis is Unsupervised

1) Dimensionality Reduction
2) Clustering

CITE-seq: Data Integration scRNAseq + scProteomics, 8617 cells

SciLifeLab

Truet och Alice
OWallenbergso Otiftelse vetenskapsràdet

LUNDS UNIVERSITET

