-8 SciLifeLab

 Analyzing omics data in the context of metabolism

NBIS Omics Integration and Systems Biology workshop Fall 2020, Lund University

Jonathan Robinson
National Bioinformatics Infrastructure Sweden (NBIS)
Science for Life Laboratory (SciLifeLab)
Chalmers University of Technology
jonathan.robinson@scilifelab.se

Information paradox

ACE2

NATIONAL BIOINFORMATICS
INFRASTRUCTURE SWEDEN

Information paradox

WikipediA The Free Encyclopedia

Main page

Contents
Current events Random article About Wikipedia Contact us

Article Talk

Angiotensin-converting enzyme 2

From Wikipedia, the free encyclopedia

"ACE2" redirects here. For other uses, see Ace 2 (disambiguation).
Angiotensin-converting enzyme 2 (ACE2) ${ }^{[5]}$ is an enzyme attached to the cell membrane kidney, and intestines. ${ }^{[6][7]}$ ACE2 lowers blood pressure by catalyzing the hydrolysis of angi angiotensin (1-7) (a vasodilator). ${ }^{[8][9][10]}$ ACE2 counters the activity of the related angiotens amount of angiotensin-II and increasing Ang(1-7), ${ }^{[11]}$ making it a promising drug target for tr
\square Circulating ACE2 in Cardiovascu
$1 \quad$ Anguiano L, Riera M, Pascual J, Soler MJ,
Cite Curr Med Chem. 2017;24(30):3231-3241. doi: 10.2174/0929867324666170414162841,

$$
\text { PMID: } 28413960 \quad \text { Review. }
$$

Share Given that ACE2 counterbalances the effects of Ang II, it has been proposed as a biomarker in kidney disease patients. Circulating ACE2 has been studied in human and experimental studies under physiological and pathological conditions and different techniques have b ...
\square Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis.
Imai Y, Kuba K, Ohto-Nakanishi T, Penninger JM
Cite Circ J. 2010 Mar;74(3):405-10. doi: 10.1253/Circj.cj-10-0045. Epub 2010 Feb 4.
PMID: 20134095 Free article. Review.
Share Importantly, ACE2 has been identified as a key SARS-coronavirus receptor and plays a protective role in SARS pathogenesis. Furthermore, the recent explosion of research into the ACE2 homolog, collectrin, has revealed a new physiological function of ACE2 as an ...
\square ACE2 - from the renin-angiotensin system to gut microbiota and malnutrition
3 Perlot T, Penninger JM.
Cite Microbes Infect. 2013 Nov;15(13):866-73. doi: 10.1016/j.micinf.2013.08.003. Epub 2013 Aug 17. PMID: 23962453 Free PMC article. Review.

Pub Med gov

- Summary

Official Symbol ACE2 provided by HGNC
Official Full Name angiotensin I converting enzyme 2 provided by HGNC
Official FuII Name angiotensin I Convert
Primary source HGNC:HGNC:13557
See related Ensembl:ENSG00000130234 MIM:300335
Gene type protein coding
RefSeq status REVIEWED
$\begin{array}{cl}\text { Linganism } & \text { Homo sapiens } \\ \text { Eukryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; }\end{array}$
Lineage Eukaryota; Metazoa; Chordata; Craniata;
Also known as ACEH
Summary The protein encoded by this gene belongs to the angiotensin-converting enzyme family of dipeptidyl carboxydipeptidases and has considerable homology to human angiotensin 1 converting enzyme. This secreted protein catalyzes the cleavage of angiotensin I into angiotensin 1-9, and angiotensin II into the vasodilator angiotensin 1-7. ACE2 is known to be expressed in various human organs, and its organ- and cell-specific expression suggests that it may play a role in the regulation of cardiovascular and renal function, as well as fertility. In addition, the encoded protein is a functional recentor for the spite cardiovascular and renal function, as well as fertility. In addition, the encoded protein is a functional receptor for the spike glycoprotein of the human coronavirus HCoV-NL63 and the human severe acute respiratory syndrome coronaviruses, S
COV and SARS-COV-2, the causative agent of coronavirus disease-2019 (COVID-19). [provided by RefSeq, Aug 2020]
Annotation information Note: This gene has been reviewed for its involvement in coronavirus biology, and is involved in SARS-CoV-2 infection.
Expression Biased expression in small intestine (RPKM 93.7), duodenum (RPKM 69.0) and 5 other tissues See more

Information paradox

Information paradox

Information paradox

Often it seems that the more information we have, the less we can learn from it.

Using techniques such as clustering and enrichment analysis, we can package the information into bitesized (human-friendly) pieces.

Gene set analysis (GSA)

- Identifies patterns associated with the genes of interest
- Gene sets are defined based on shared properties, functions, interactions, etc. of the genes

MSigDB
 Molecular Signatures
 Database
 Gene Ontology

Molecular Function
Glucosidase activity
Alpha actinin binding
Cytokine activity
Oxidized DNA binding Iron ion binding

KEGG Pathways

v 09100 Metabolism

- 09101 Carbohydrate metabolism
v 09102 Energy metabolism
- 00190 Oxidative phosphorylation [PATH:hsa00190] 00195 Photosynthesis
00196 Photosynthesis - antenna proteins
00710 Carbon fixation in photosynthetic organisms 00720 Carbon fixation pathways in prokaryotes 00680 Methane metabolism
- 00910 Nitrogen metabolism [PATH:hsa00910]
- 00920 Sulfur metabolism [PATH:hsa00920]
- 09103 Lipid metabolism
- 09104 Nucleotide metabolism

GEM-derived gene sets

Subsystem gene sets

INFRASTRUCTURE SWEDEN

Arginine and proline metabolism

ABHD14A-ACY1		ACY1	AGMAT	ALDH18A1 A		ALDH1B1	ALDH2	ALDH3A2 AL		ALDH4A1
ALDH7A1	ALDH8A1		ALDH9A1	AMD1	AOC1	AOC2	АоС3	ARG1	ARG2	AZIN2
CA5A	CA5B	CARNS	1 CKB	CKM	CKMT1A	Скм	1 B CK		CNDP1	CNDP2
DHPS	FAR1	FAR2	GAMT	GOT1	GOT2	HOGA1	LEFTY1	MAOA	A MAOB	MTAP

Beta oxidation of phytanic acid

| ACAA1 | ACOT2 | ACOT4 | ACOX1 | ACOX3 | ACSBG1 | ACSBG2 | ACSL1 | ACSL3 | ACSL4 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ACSL5 | ACSL6 | AMACR | ECI1 | ECI2 | EHHADH | HACL1 | HADHA | HSD17B4 | KRTAP11-1 | | |
| MEIKIN | MYO5B | PHYH | SLC27A2 | \ldots | | | | | | | |

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ABCB11 | ABCC11 | ABCC3 | ABCD1 | ACAA1 | ACAA2 | ACOT1 | ACOT2 | ACOT4 | ACOT6 |
| ACOT7 | ACOT8 | ACOX1 | ACOX2 | ACOX3 | ADH1A | ADH1B | ADH1C | ADH4 | ADH5 |
| ADH6 | ADH7 | ADHFE1 | ADO | AKR1B10 | AKR1B15 | AKR1C1 | AKR1C2 | AKR1C3 | AKR1C4 |
| AKR1D1 | ALDH1B1 | ALDH2 | ALDH3A1 | ALDH3A2 | ALDH7A1 | ALDH9A1 | AMACR | BAAT | |

GEM-derived gene sets

Reporter metabolites

Genes associated with D-tagatose-6-phosphate

Reporter metabolites

D-tagatose-6-phosphate interaction partners

Gene list enrichment

Enrichment or over-representation analysis

Given a list of \boldsymbol{m} genes of interest out of \boldsymbol{g} in the genome and a gene-set of \boldsymbol{k} genes, a statistical enrichment returns the probability that \boldsymbol{x} out of the \boldsymbol{m} genes of interest are in the gene-set.
This is calculated using Fisher's Exact Test (hypergeometric test):

$$
\begin{aligned}
& p=\frac{\binom{k}{x}\binom{g-k}{m-x}}{\binom{g}{m}} \\
& \quad \text { note: }\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Gene list enrichment

Input data

Choose an input file to upload. Either in BED format or a list of genes.

Try an example BED file.
Browse... No file selected.

Paste a list of valid Entrez gene symbols on each row in the text-box below. Try a gene set example.
 INFRASTRUCTURE SWEDEN

Gene list enrichment

Gene list enrichment

Limitations

- Requires arbitrary cutoff to define gene list
- Does not correct for gene-gene correlations (false positives)
- No ranking or relative scoring of genes
(gene at the top of the list is identical to bottom)

Gene set analysis

List of genes

```
```

ENOPH1

```
```

ENOPH1
SLC25A2
SLC25A2
GMPPB
GMPPB
SLC1A4
SLC1A4
EGFL8
EGFL8
HDC

```
HDC
```

```
genes of interest
```

```
genes of interest
```


Gene-level statistics

```
0.01 A4GALT
0.89 A4GNT Includes ALL measured/
0.51 AAAS
0.02 AACS
0.33 AADAC
0.08 AADAT
Gene-level statistics
    0.01 A4GALT
```

 ...

Types of statistics:

- Differential expression p-value
- Differential expression fold-change
- Coefficient or significance of correlation (with phenotype)
- Rank

Gene set analysis

General GSA procedure

1. Score each gene set based on the statistics of the genes it contains
2. Evaluate the significance of each gene set score based on the score of the null or "background" score distribution

There are many methods for both steps 1 and 2

GSA Tools: Piano (R)

Gene-level statistics

B

\leftrightarrow Key concept

Calculations

Gene set statistics

- Interpretation-

Directionality classification

* Key concept

Gene-level statistics

Significance estimation

GSA Tools: Piano (R)

Gene-level statistics (DE results)

Gene	log2FC	p-value
ENOPH1	-2.4	0.0003
SLC25A2	1.1	0.09
GMPPB	0.3	0.8
SLC1A4	-0.9	0.2
EGFL8	-1.8	0.04
HDC	-6.2	0.0001
A4GALT	3.1	0.0002
\ldots	\ldots	\ldots

GSA Tools: Piano (R)

For each gene set, we can calculate 5 different p-values:

Non-directional:

Test for enrichment of significant (low p-value) genes, ignoring fold-change direction.

GSA Tools: Piano (R)

For each gene set, we can calculate 5 different p-values:

Non-directional:

Test for enrichment of significant (low p-value) genes, ignoring fold-change direction.

GSA Tools: Piano (R)

For each gene set, we can calculate 5 different p-values:

Non-directional:

Test for enrichment of significant (low p-value) genes, ignoring fold-change direction.

Mixed-directional (down and up):
Test if a subset of the gene set is enriched in significantly increased or decreased genes

GSA Tools: Piano (R)

For each gene set, we can calculate 5 different p-values:

Non-directional:

Test for enrichment of significant (low p-value) genes, ignoring fold-change direction.

Mixed-directional (down and up):
Test if a subset of the gene set is enriched in significantly increased or decreased genes

Distinct-directional (down and up):

Test if the gene set is enriched in significantly increased or decreased genes

Gene set

Significantly increased expression
negligible change

Significantly decreased expression

GSA Tools: Piano (R)

For each gene set, we can calculate 5 different p-values:

Non-directional:

Test for enrichment of significant (low p-value) genes, ignoring fold-change direction.

Mixed-directional (down and up):

Test if a subset of the gene set is enriched in significantly increased or decreased genes

Distinct-directional (down and up):

Test if the gene set is enriched in significantly increased or decreased genes

Gene set

Significantly increased expression
negligible change

Significantly decreased expression

GSA Tools: Piano (R)

For each gene set, we can calculate 5 different p-values:

Non-directional:

Test for enrichment of significant (low p-value) genes, ignoring fold-change direction.

Mixed-directional (down and up):

Test if a subset of the gene set is enriched in significantly increased or decreased genes

Distinct-directional (down and up):

Test if the gene set is enriched in significantly increased or decreased genes

Gene set

Significantly increased expression
negligible change

Significantly decreased expression

GSA Tools: GSEA (R, python)

Gene Set Enrichment Analysis

GSA Tools: GSEA (R, python)

Gene Set Enrichment Analysis

Context-specific GEMs

A GEM contains all metabolic reactions that are known to occur within an organism

When working with multicellular organisms (e.g., humans), the "generic" GEM containing all reactions is not representative of any real cell or tissue type

We can use omics data to extract a subset of the generic GEM that is active in our system of interest

This GEM is called an "extracted" or context-specific GEM

Context-specific GEMs

There are many methods to generate context-specific GEMs.
For example:

- iMAT (Integrative Metabolic Analysis Tool)
- MBA (Model Building Algorithm)
- mCADRE (metabolic Context-specificity Assessed by Deterministic Reaction Evaluation)
- tINIT (Task-driven Integrative Network Inference for Tissues)
- FASTCORE

Unfortunately, they were all implemented in MATLAB.
Here are some links to tutorials to using some of the methods:
tINIT: https://sysbiochalmers.github.io/Human-GEM-guide/gem extraction/
iMAT: https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialExtractionTranscriptomic.html

BB:S NATIONAL BIOINFORMATICS
INFRASTRUCTURE SWEDEN

THE CANCER GENOME ATLAS
National Cancer Institute
National Human Genome Research Institute

GEM-based comparison of transcriptomes

From the study Robinson, et al. An atlas of human metabolism. Science Signaling 2020

EEGTExPortal

Tissue Sampling Sites

This page provides a visual representation of the biospecimen source sites (BSSs) for the collection of tissue from postmortem/organ procurement cases for the Genotype-Tissue Expression (GTEx) project.
The full documentation on tissue collection procedures can be found on the GTEX Tissue Harvesting Work Instruction [C].

GEM-based comparison of transcriptomes

Context-specific GEMs were extracted for each of the cancer types and healthy tissue types

GEM-based comparison of transcriptomes
GEM structure (reaction content) can be represented by a binary vector

| Reaction | Lung
 Tumor | Lung
 Paired | Lung
 Healthy | Brain
 Tumor | Brain
 Paired | \cdots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Model |
| :---: |
| contains |
| reaction |

GEM-based comparison of transcriptomes

Distance (Hamming) between each GEM reaction content vector can be calculated and projected in a tSNE embedding

GEM-based comparison of transcriptomes

If reaction subsystem labels are included, we can look at subsystem-specific differences between GEMs

Subsystem	Reaction	Lung Tumor	Lung Paired	Lung Healthy	Brain Tumor	Brain Paired
TCA cycle	rxn1	1	0	1	1	1
TCA cycle	rxn2	0	1	1	1	1
Glycolysis	rxn3	0	0	0	0	0
TCA cycle	rxn4	0	1	0	1	0
Fatty acid oxidation	rxn5	1	1	0	1	1
Carnitine shuttle	rxn6	1	0	0	1	0
Glycolysis	rxn7	0	0	1	1	0

NBĚS NATIONAL BIOINFORMATICS INFRASTRUCTURE SWEDEN

GEM-based comparison of transcriptomes

If reaction subsystem labels are included, we can look at subsystem-specific differences between GEMs

Subsystem coverage: Liver

Furthermore, FBA can be used to determine what metabolic functions the GEMs can or cannot perform

Functional comparison: Liver

Exercise: GEM-based GSA

Exercise part 1: (python, short)
Extract metabolite and subsystem gene sets from Human-GEM

Exercise part 2: (R)

Use the GEM-derived gene set collections to evaluate enrichment of differentially expressed genes in different regions of the metabolic network.

