Single cell RNA sequencing data analysis, 2023

Åsa Björklund & Paulo Czarnewski

Raw data: scRNA-seq analysis overview fastq files Mapping & Data normalization Gene expression estimate Gene set selection Batch effect removal Removal of other Data: QC: confounders **Expression profiles** Remove low Q cells Remove contaminants Clustering methods Visualization / Trajectory Defining cell types/lineages Dimensionality reduction assignment Gene signatures Verification experiments

Some take-home messages

- Data analysis is very seldom a straight line one pipeline fits all.
 - Often requires several iterations of filtering data, exploring data, refiltering, exploring again, discovering technical artifacts, normalization, exploring again, etc. etc.

- Get to know your data what types of variation do you have?
 - PCA is a good tool for exploring data
- Apply appropriate methods to control for problems that you see.

- Always check for:
 - Batch effects think of all possible batches.
 - Cell cycle effects if appropriate
 - Separation due to nUMI / nGene / percent mito
- Both at the start of a project and at the end for your final clustering.

- Variable gene selection is a very critical step
 - Filter to much and you may lose populations
 - Keep to much and you may have too much noise
- Similar for choice of PCs

- Clustering try out a few different approaches
 - Consensus of different methods gives confidence
 - If they do not agree figure out why!

- Use your biological knowledge to evaluate the results
- Warning! Do not overfit your data to fit your initial hypotheses. Keep an open mind;-)

- Remember that bioinformatics tools are giving predictions not the truth – always keep a critical mind!
 - Clustering
 - Differential expression
 - GSEA
 - Celltype prediction
 - Deconvolution

- In this course we point out many of the problems that can occur..
- Do not worry too much, in most cases, a standard workflow works well!

- scRNAseq analysis is a fast evolving field with new methods being published all the time.
 - Try to keep up with development
 - BUT! You cannot test every new method out there!

Reproducible research in R

- R / Rstudio in Docker containers
 - https://www.andrewheiss.com/blog/2017/04/27/super-basicpractical-guide-to-docker-and-rstudio/
 - https://github.com/rocker-org/rocker
- OBS! On Uppmax only Singularity containers are allowed. Most Docker images can be converted.
- Learn more on containers etc:
 - http://nbis-reproducible-research.readthedocs.io/en/latest/
- Rstudio package management Packrat
 - https://rstudio.github.io/packrat/
- Conda installations of packages can use conda on both bianca and rackham – module load conda

NBIS course in reproducible research: https://uppsala.instructure.com/courses/73110

Compute resources

- In these exercises the datasets were small, but you may have many more cells/samples.
- Structure your code to avoid duplication of matrices and expansion of sparse matrices
 - -rm() & gc()
- Plan ahead for compute resourses, local computer, uppmax or other HPC clusters.
- Human data raw reads only on encrypted servers like Bianca. Count matrices is fine to use in other places.

Some conda comments

- Conda disc space usage
- conda env remove —n myenv
 - Will remove an environment
- conda clean —all
 - Will remove all tarballs and packages that are not used.

 We have covered the basic processing, but there is much more you can do...

Copy-number variation (CNV) profiling with RNAseq

Allele and isoform information with SmartSeq3

Receptor ligand interaction

Gene regulatory networks

Single cell omics

SC Multimodal omics

scGESTALT – lineage tracing and cell profiling with CRISPR-Cas9 editing of barcodes

(Raj et al. Nature Biotech 2018)

crisprQTL mapping for enhancer-gene pairs

Interactive visualization

Shinycell

Cellxgene

iSEE

TissUUmaps

Resources

- Course at: https://hemberg-lab.github.io/scRNA.seq.course/
- Scanpy course: https://www.sc-best-practices.org/
- Orchestrating Single-Cell Analysis with Bioconductor http://bioconductor.org/books/3.13/OSCA/
- Many of the packages have good tutorials on their websites
- Repo with scRNA-seq tools: https://github.com/seandavi/awesome-single-cell
- Single cell assay objects for many datasets: https://hemberg-lab.github.io/scRNA.seq.datasets/
- EBI Single cell expression atlas: https://www.ebi.ac.uk/gxa/sc

Need help?

- NBIS project support
- Courses in programming and other types of analyses.
- Drop-in sessions every Tuesday 14.00
- More info at: http://nbis.se/

Please fill in the Evaluation Form

Your feedback is important so that we can help improve the course.

Good luck with your analyses!

