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BRI whoam?

e Name : Alma Andersson
e Part of : Lundeberg Lab (PhD Student)
e Works with : Computational Method development

o  Mainly focus on spatial data

e Background :
o  Engineer by training
o Molecular Dynamics
m lon channels (Delemotte Group)

o  Spatial Transcriptomics

® |Interests:

Statistical modelling
Machine learning
Evolutionary algorithms
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Bl B 1My vision for today

[ Experimental spatial transcriptomics techniques ]

Broad overview of techniques
Common themes
Data produced

[ Computational methods for analysis of spatial transcriptomics data ]

Different flavors of methods
Examples of relevant analysis
Extra focus on single cell mapping and integration

[ Visium and Spatial Transcriptomics data ]

Clearing up some confusion, ST vs. Visium?
Visium specs and some brief words of advice on the analysis
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[ Microdissection-based technologies

Isolate a region of interest, place isolate in separate
well and sequence (either by bulk or single-cell
methods).

A “Brute Force” approach.

Examples : LCM, Tomo-seq, TIVA, ProximID,
Niche-seq
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[ In-situ sequencing based methods

Sequence the transcripts in place.
Offer sub-cellular resolution. Some relies on “a

priori” defined targets, but not all.

Examples : ISS/Cartana (padlock probes), BaristaSeq,
STARmap, FISSEQ
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[ In-silico reconstruction

Infer and reconstruct spatial structure from
non-spatial data (e.g., single cell).

Examples : novoSpaRc, CSOmap, Seurat v3

Sci Lab
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[ In-situ hybridization based methods

Labeled probes for specific targets, hybridize in
place.

Requires “a priori” defined targets.
Expansion strategies and smart decoding scheme has

helped to overcome spectral overlap.

Examples : smFISH, seqFISH, MERFISH, seqFISH+,
osmFISH, RNA Scope, DNA microscopy
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[ In-situ capture based methods

Capture transcripts in situ but sequence ex situ.
Usually less dependent on prior selection of targets.

Examples : Visium, ST, Slide-Seq, HDST, GeoMX,
Apex-Seq,
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AGBT 2020: DeciBio Highlights — Spatial
Profiling Reloaded & MGI Unleashed

PubMed results

nature methods

Method of the Year2020:
Spatially resolved transcriptomics

results per 100 000

Spatial Transcriptomics
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Further Readings

Spatially Resolved Transcriptomes—Next Generation Tools for
Tissue Exploration

Authors : Michaela Asp, Joseph Bergenstrahle, Joakim Lundeberg
Published : 2020-05-04

DOI: 10.1002/bies.201900221

Method of the Year 2020: spatially resolved transcriptomics
Authors : Editorial

Published : 2021-01-06

DOI: 10.1038/s41592-020-01042-x

Spatially resolved transcriptomics adds a new dimension to
genomics

Authors : Ludvig Larsson, Jonas Frisén & Joakim Lundeberg
Published : 2021-01-06

DOI: 10.1038/s41592-020-01038-7
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Bl B 1150 which technique is best?

Vom Slide-seq Only 2 sides of a multidimensional coin.
'SIum - HpsT Tomo-seq, Geo-seq, novoSpaRc and NASC-seq
104 DistMap ME@E%M . ) .
Other things to keep in mind are:
D
- STARMa
5 ’ e Area covered
ISS
5 e Targeted or not
é e Cost
e S e Ease of execution
e Time of execution
RNAscope .
e Reproducibility
In situ hybridisation ClamsFgHSH
B 5- 5 5 5
8 3§ >3 2 =
2= 2 @
Resolution

Currently some common rules of thumb:
® Inverse relationship between throughput and resolution
e Commercial products expensive, but robust and fast
e Capture based methods introduce certain spatial bias w.r.t. locations

Figure based on table 1 “From whole-mount to single-cell spatial assessment of gene expression in 3D” Waylen et.al
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Bl B 1l what you get in the end

in-situ sequencing and hybridization
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in-situ capture

In situ mRNA capture
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Figure adapted from : Uncovering an Organ’s Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics, Liao et.al



Bl Bl \what you get in the end

in-situ sequencing and hybridization

Gene 1

DAPI stained L] Exact location of targets

Gene 2 e Data Processing often includes :
o  Decoding of signal (which transcript)
o  Cell segmentation
o Assignment of transcript to cell
o (Cell type calling)
e Often presented as [cell]x[gene] matrix in the end

Gene 3

Gene 2

in-situ capture

Genel Gene2 .. GeneN . eu ” .
sots] 101 [ 5 [-] 13 ] @  Mini “bulk” average expression at each spot

e Data Processing often includes :
o Genome mapping and annotation
o  Spatial barcode demultiplexing
m  Which site does each transcript originate from
e Often presented as [spot] x [gene]
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HEllA motley crew of diverse methods

Single cell inspired methods
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Bl B 1 Isingle Cell Inspired methods

e Basicidea : apply existing methods and tools developed for SC
data. Fine tune to make them more suitable for spatial data
e Examples:
o  Cluster spatial data, show clusters in space
o Decompose expression profiles using factor models
o  Trajectory Inference :
m Alt1:treatassingle cell data
m Alt 2 :reconstruct algorithm
e Suites/Tools:
o  Seurat : added support for spatial data
Scanpy : added support for spatial data
STUtility : built on Seurat tailored for spatial data
stLearn : built on scanpy tailored for spatial data
SpatialExperiment : (similar to SingleCellExperiment in R)

O O O O O

And many more...

Single cell inspired methods

&
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Bl B 1l Example clustering | Human Breast Cancer (ST1K)

UMAP embedding Pathologist annotation ~ Spatial distribution of
(for reference) Clusters

cluster

® 0:cancer 1

. 5
6: cancer : connective tissue 5: capagr2

® 1:immune : B/plasma cells
: adipose

:immune : APC, B-cell, T-cell

: cancer 2

2
3
4: cancer in situ : immune rich
5
6

UMAP_2

: cancer : connective tissue

UMAP 1

Figure from : Spatial Deconvolution of HER2-positive Breast Tumors Reveals Novel Intercellular Relationships, Andersson et.al SCI




11 |Trajectory Inference

Original Modified
(La Manno et.al) (Xia et.al)
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e Modified the original velocyto algorithm
® Nuclear mRNA vs Cytoplasmic mRNA instead of spliced vs. unspliced

e Infer transient cell states




-1 1 Integration with single cell data

® Basicidea : use SC data as a reference when working with spatial
data.
® Answers : Where are cell types in SC data found in space?
e But why? Two main reasons :
o . Leverage extensive annotation work
done for single cell data.

o Problem of (some methods)

Single Cell

Spatial

Integration with single cell data




Bl B | vixed contributions
Spot 1 Spot 2 Spot 3

In several of the capture based techniques (e.g., Visium and Slide-seq), observed expression values
are contributions from multiple cells. Not all necessarily of the same type.

Sci Lab

atp,
§KTHY




Bl B 1| vixed contributions

Y

® (Clusters do not

represent cell types
% ® Clusters are more an
assembly of spots with
similar composition of

Cluster

x x cm @ cell types.
1 P We h idea what
Population| ¥ ¥ B (@  ° ochavenoideauhs
. . x X ® . population looks like.
Only observe
expression
Expression I' |" “'I
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Bl B 1| vixed contributions

® (Clusters do not

represent cell types
% ® Clusters are more an
assembly of spots with

similar composition of
cell types.

Cluster

POpU|aﬁOﬂ HIDDEN ° l?q/z?:l\lliyr:;ideawhat
population looks like.

Only observe
expression

Expression

Observed Sci




BEERllour objective : deconvolve expression data

We want this

Spot 2 Spot 3

Spot 1
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-1 1 Integration with single cell data

e Inner : Single cell data from mouse
brain, gt-SNE embedding. Colored
by cluster.

e Outer : Visium data of mouse brain.
Facecolor intensity indicates
proportion value of cluster.

A - Astrocytes

| - Immune

N - Neurons

O - Oligos

V - Vascular

Ep - Ependymal
Ex - Excluded

© N18

(generated with stereoscope)

Figure 2 from “Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography”, Andersson et.al SCI



-1 1 Integration with single cell data

Marker gene based

Anchor based

Probabilistic
Modelling

ASSUTTTE BETTE EXPTESSTOTT

Optimization based

Extract marker genes (MG) for
each cell type from SC data

Compute enrichment score for
each set of MGs in spatial

locations

Normalize to make scores sum
to1l

Ex: Itai et.al

. /

.

Find anchors between
modalities (MNNs). Create
correction vector based on

differences in expression.

Use correction vectors to
remove platform effects.

Integrated data sets.

Transfer labels of single cells to
spatial data points.

Ex: Seurat

AN

follows certain statistical
distributions.

Joint model for SC and spatial
data. Learn cell type
parameters from SC data, use
to deconvolve spatial data
(when mixed).

Correct for eventual platform
differences

Ex: stereoscope, RCTD,
cell2location

Find spatial location where
each cell is most likely to reside.

Tries to simultaneously
optimize terms such as:
e  Cell density
e UMl distribution across
genes within spots
e  gene distribution across
spots

Ex: Tangram

AN

/
1]

Lab

Sci



11 |Spatia|ly aware methods

Basic Idea : Attempts to include knowledge of spatial Spatizlgdeg methods

structure in the analysis, not only to visualize results.

Variable

Gene B Gene A Spatially

Designed for tasks like :

e Identifying spatially variable genes and features
o Why not just select highly variable genes ( )

® Finding spatially coherent expression domains

® Leverage spatial proximity to increase robustness of
inference (e.g., CNA inference)

® Find local correlations between features

Sci'  Lab [




11 |Spatia|ly Variable Genes

Giene B

)

| x#Genes

4

O
s

Spatial gene expression

N

Exhibit Spatial Pattern No Spatial Pattern

INE

[9A3] uoissaldx3

Sort expression profiles into
spatially variable or not.

SpatialDE, SVCA and SPARK use
probabilistic models

Leverage Gaussian Processes
(not same thing as multivariate
gaussian) to model data

Essentially, test whether a
“spatial” term in the covariance
function significantly increase
model’s ability to explain data

Sci Lab




11 |Spatia|ly Variable genes

® ® sepalis not probabilistic
e Measure time
t=0 ® Uses finite differences to

t:td
> simulate diffusion of transcripts.

e Measures time util converges

e Ranks genes by the time it takes
to converge.

e Idea: The longer the time, the
more structured the initial

Initial state converged state state.
Sci ~Lab

In press : Oxford Bioinformatics



11 |Spatia|ly Variable Genes

Prked

Tnntl Tcf712 Baiap3 Ctxn3 Slc17a7 Mal

- -

-
&

shuf_Pmch shuf_Prkcd shuf_Hcrt shuf_Tnntl shuf_Tcf712 shuf_Baiap3 shuf_Ctxn3 shuf_Slc17a7 shuf_Mal

- - - - -

® 20 Expression profiles from
mouse brain

‘
. |

heg e Shuffle spots to get random
expression profiles. Has
“shuf” prefix.

Slc30a3 Tacl Calb2 Nptxr Mog Slc17a6
. -

H ‘
N

shuf_Cldn11 shuf Slc30a3 shuf Tacl shuf_Calb2 shuf_Nptxr shuf_Mog shuf_Slc17a6 shuf_Cbinl shuf_Ugt8a shuf_Mag

- | I I II ‘l - - ” -

I Observed Profiles Shuffled Profiles




11 |Spatia|ly Variable Genes

100 - e - 800
0.75 1 Variance '500§
+3 0501 - 400 ©
| -
025 1 F200 S
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Profile
e Variance or dispersion metrics renders exactly the same value (gray) for shuffled and non-shuffled profiles
® sepal’s ranks real profiles higher than shuffle ones (spatial structure considered)
[ J

Similar results obtained for other methods as well (SpatialDE, SPARK, etc)

Sci Lab




11 |Spatia|s domain patterns
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Example : Identification of spatially associated subpopulations by combining scRNAseq and sequential
fluorescence in situ hybridization data”, Zhu et.al

Normal clustering mainly focus
on gene expression

Leverage spatial information to
find spatially coherent clusters
(domains)

Common to use HMRF (Hidden
Markov Random Field)

Construct a graph based on spatial
proximity

Probability of node (cell) belonging
to a specific domain depends on:

o  Agreement with domain
expression profile

o  Coherence with neighbors

Sci - Lab f




11 |Spatia|ly aware methods

(a) spatial Transcriptomics Data Clone Assignment
oA e Name:STARCH
@c . .
X o Infer Copy Number Aberrations (CNA) from spatial
Genes Clone Copy Number Profiles . .
NETD =) STARCH I ‘l' : ||| | "]°g transcriptomics data
Al . al” il Jec . . .
? A L e EEEIT 10331 ® Increase robustness of inference by aggregating data in same
b Ci rorri‘)somes chromosomes . . . .
B! " domains (similar profiles)
Hidden Random Field Z
® Also uses Hidden Markov Random Fields (HMRF)
®  “STARCH: Copy number and clone inference from spatial
H H 7
erzzmm transcriptomics data” by Elyanow et.al
a b Ambt Mtor Correlation of both genes
Name : scHOT ¢ $5ases o028 g o122,
o | Rt AR Ek
Computes (spatially) weighted correlations to g 38 o Q3 x 1382 42 a
® IX. > <J 4 : ;
find local correlations. 03837013 3, 3 23 RS 53408 230 L & "
. . . . . . o> ol ‘e @ i
e  “Investigating higher-order interactions in ik 3 .fg 2%
. R Granule layer xpression rrelation
single-cell data with scHOT” by Ghazanfar, et.al ntaral o ayr = a1
External glexltorm layer Low High -1.0-05 0 05 10
Glomerular layer
Olfactory nerve layer
o<
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-1 1 Deep Learning

Deep learning

1 )&Predicﬁon
IO i i

l“.' A ~

Q

Basic Idea : Applying deep learning to spatial data (very broad)

Nascent : Relatively few examples. Limited amount of high
guality available data. More traditional ML methods have so far
been more appropriate to use. This is changing.

Expression

Image
v
\

Current examples :
e stNet: relate gene expression data to morphology.

o xFUSE : “superresolution” (pixel) of gene expression by

learning joint representation of image and expression data.

Scii Lab @




Bl B 1l Deep Learning | xFUSE

a. Latent tissue state Latent expression Observed expression d. Ntng1 Dusp14
S XY Gene #
Penk | 1 1 Penk 10 -
Id4 ) 111d4 8 &
""" > 21 Penk 22
21 1d4 14 2,
: : . 2
©
o

Inferred

Observed histology

44 o
aus woun

RMSE
n E
RMSE
In situ hybridization

L] L] L] T L] T
Interpolation XFuse 1 4 11 12 (in-sample)

Training set size (sections)

From : “Super-resolved spatial transcriptomics by deep data fusion”, Bergenstrahle
et.al (Figure 1) Sci' ~Lab




ST/Visium Data



Spatial Transcriptomics, ST and Visium,
what’s the deal?



Bl B 1 | spatial Transcriptomics (ST)

Mid 2016 The saga begins..

Technique presented as Spatial Transcriptomics (ST)

Concept : Spatially Barcoded Array

I

Science Publication
Stahl et.al

Sci! i ~Lab §




Bl B 1 | spatial Transcriptomics (ST)

Mid 2016

Mainly used by the Lundeberg
and Frisén lab

e N
Late 2018

Science Publication
Stahl et.al

Sci'  Lab [




Bl B 1 | spatial Transcriptomics (ST)

Mid 2016

Mainly used by the Lundeberg
and Frisén lab

= DN
s )

Visualization and analysis of gene
by

Late 2018
— |
=8 ,' |
= P4
Science Publication .
stahl et.al GENOMICS
(acquisition)

Sci

Lab [




Mid 2016

Visualization and analysis of gene
expression in tissue sections by
spatial transcriptomics

Visium

Science Publication
Stahl et.al

Now referred to as:
- ST
- Legacy ST
- Original ST
- STik
- Visium (by unattentive readers..)

Late 2018 Late 2019
| |
| |
1 O /\ Launch of Visium
GENOMICS® Spatial Gene
. Expression Platform
(acquisition)

Sci

Lab




Mid 2016

Science Publication
Stahl et.al

: ' Visium
i i Visium HD
| | Resolution 1,500x
Late 2018 | Late 2019 5022
| | | : |
\/ ! o i B
J\ | Launch of Visium : Visium HD
GENOMICS®: Spatial Gene i
. | Expression Platform i
(acquisition) ! :

______________________________________




BB visium Platform

Array based technique
6.5mm x 6.5mm area to put sample on
4992 spots arranged in hexagonal grid

Spot specs:
o  Spot diameter : 55um
o  Center to center distance : 100 um
Each spot has millions of capture probes
o  spatial barcode
o polyT sequence
O  captures polyadenylated mRNA
o  Full transcriptome(-ish)
~ 1-10 cells contribute to each spot

o NOTE : Not single cell resolution!

You also get HE-image of the same tissue




BRI A example

e Example with Human Breast cancer data
o  Public data : Available at 10x website

2. Spots + Image 3. Spots | ERBB2 expression + Image

1. Spots

Facecolor intensity proportional
to gene expression value




Bl B 1A word on the distribution

e Single cell data usually modelled as overdispersed Poisson distribution (Negative
Binomial). Basis for several analysis methods (Normalization, DE, etc.)
e Applicable to ST/Visium data as well

Eno2

o i i Similar trends for all !

[ > U Dist. > Dist. > Dist. : :

o A — Nogin B - Neogn -wen 1 Clusters and genes.

I S X sim o = !

I '\ 1 1

= \ ! !

© | Supports NB :

: = CO:gtS " . ‘OCOUHIZ: o R 280Un‘540 : d iSt ri b ut i O n' a ISO :

Eno2 Tubba \ when corrected for

| increased parameter

i I I\ 1 1

= N Dist > Dist o] o Dist | number compared to |

G) E ; ! - N‘egBin. § - N‘egBm. E - N‘egBm. ! . !

o Al Zimt S & - 1 Poisson). |

S e s

Visium data Mouse Brain s O s oow B
Colored by cluster .
Sci

Figure Supplementary “Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography”,
Andersson et.al




Bl B 1l some brief words on the ST/Visium analysis

° Batch effects between sections are usually observed, try to account for this. SC methods have worked great so far.

e  Cell density is often not homogeneous across tissue. Good to normalize based on the library size to account for this.

° Keep in mind that expression profiles are mixtures, often it makes more sense to analyze them accordingly; looking at factor contributions
rather than hard cluster identities.

e  Single cell mapping is often improved by use of HVG genes or curated lists

e  Trajectory inference is tricky, no method that | am aware of accounts for the fact that several temporal states might be present at each
observation. Incorporation of spatial information has been done fairly heuristically so far.

° Filtering ribosomal, mitochondrial and Hb-genes usually have a positive effect on the result. They usually constitute irrelevant sources of
variation.

° We have observed some “leakage” around the edges, especially in Visium samples. Diffusion is minimal in tissue, but near borders
transcripts might leak a bit. Keep this in mind.




-."Summary

® Tons of spatial techniques
o  Only a few commercialized ones
o  Define your question before choosing the method
® Everincreasing repertoire of computational methods

o  Be careful when transfering SC methods, ask yourself if it makes sense.
o  Explore and test
o  Make use of the spatial information for sanity checks

® STisthe old Visium
e Don’tjust treat spatial data as a different form of SC data, it has much more to offer




Thank you for the attention!

. & o

https://github.com/almaan https://almaan.github.io https://www.spatialresearch.or



Bl B 1 | spatial co-localization of cell types
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Figure from : Spatial Deconvolution of HER2-positive Breast Tumors Reveals Novel Intercellular Relationships, Andersson et.al SCI Lab




-1 1 Expression as function of distance
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From “Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the liver”, by
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11 |Spatia| Cell Type Distribution
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-1 1 Decomposition by factor models
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Probabilistic Model

Core Model Regression Coefficient Prior Structure

r~ N(0,1) rg ~ N(0,1) rge ~ N(0,1)
re ~ N(0,1) ris ~ N(0,1) rs ~ N(0,1)
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