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Why do we need to normalize
scRNAseq data?
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Biological and technical variation

* Biological variation:
— Cell type/state
— Cell cycle
— Cell size
— Sex, Age, ...
— Etc..

* Technical variation
— Cell quality
— Library prep efficiency
— Batch effects
— Etc...
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Biological and technical variation

* Biological variation:
— Cell type/state

— Cell cycle
—Cell size , ,
N A To identify cell types
— Sex, Age, .. :
5 we would like to
remove all other
— Etc..

sources of variation.
* Techhical variation

< Cell quality

— Library prep efficiency
— Batch effects

— Etc..
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UMiIs does not solve the problem

C Cell-specific  Gene-specific Not removed
effects effects by UMIs
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Normalization

 Want to make expression comparable across
samples, cells and genes.

* Involves 3 main steps:
— Scaling
— Transformation

— Removal of unwanted variation
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Scaling Normalization

e Count normalization —for uneven sequencing depth

* Gene length normalization — for differences in gene
detection due to gene length

* Drop-out rate normalization — for differences in RNA
content / drop-out rates

OBS! After scaling we have relative amounts of the
different genes, not absolute values.

/
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Depth normalization

* Assuming same RNA content in all cells — may work
well in homogeneous cell population

* |n most cases the amount of RNA — and of
UMIs/reads differ between cells.

* Also important to check for oulier genes that
constitute large proportion of the reads!

/
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Bulk RNAseq methods

 CPM: Controls for sequencing depth when dividing by total count

 RPKM/FPKM: Controls for sequencing depth and gene length. Good for
technical replicates, not good for sample-sample due to compositional
bias. Assumes total RNA output is same in all samples.

 TPM: Similar to RPKM/FPKM. Corrects for sequencing depth and gene
length. Also comparable between samples but no correction for
compositional bias.

FPKM, = ——i = 2i.10°

A Xi: observed count
(IT) (1._,«> li: length of the transcript
| N number of fragments sequenced
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Transformation Normalization

* |dea is to have a distribution of expression and
variance in expression values that best captures
biological variation.
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Logtransformation

* Log-transformed values approaches normal
distribution for bulk RNAseq data

* For scRNAseq — more similar to zero-inflated
binomial

e Still more similar to normal distribution than raw
counts.

Counts Lognorm
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Bulk RNAseq methods

« TMM/RLE/MRN: Improved assumption: The output between samples for
a core set only of genes is similar. Corrects for compositional bias. RLE and
MRN are very similar and correlates well with sequencing
depth. edgeR::calcNormFactors() implements TMM, TMMwzp, RLE &

UQ. DESeq2::estimateSizeFactors implements median ratio method (RLE).
Does not correct for gene length.

* VST/RLOG/VOOM: Variance is stabilised across the range of mean values.
For use in exploratory analyses. vst() and rlog() functions
from DESeq2. voom() function from Limma converts data to normal
distribution.
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Depth normalization and logtransformation
in practice:

The most simple normalization is to divide by

sequencing depth * a scale factor and log-transform
the data

Scater normalize — uses total counts or provided size
factors. Default is return_log = TRUE.

Seurat NormalizeData — returns log-normalized data
with scale.factor = 10K by default.

Scanpy normalize_per_cell/normalize_total —
normalize by sequencing depth — then need to run
loglp.

D .
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scRNAseqg normalization

Deconvolution/Scran (Pooling-Across-Cells)
SCnorm (Expression-Depth Relation)
SCTransform

Census

Linnorm

/INB-WaVE

BASICS

More...
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Scran - computeSumkFactors

e Deconvolution with all cells

— The assumption is that most genes are not differentially
expressed (DE) between cells,

* Deconvolution within clusters (FastCluster
beforehand)

— Size factors computed within each cluster and rescaled by
normalization between clusters.

— When many genes are DE between clusters in a
heterogeneous population.

 computeSumrFactors — will also remove low
abundance genes
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Normalization with gene groups

* Global scale factors may lead to overcorrection for
weakly and moderately expressed genes and
undercorrection for highly expressed genes.

* |t will also differ a lot between cells with high/low
total counts.

e Solution: Do normalization for genes at different
expression levels — SCNorm & SCTransform

/
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SCNorm: Expression vs. Depth Bias Correction
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SCNorm: Expression vs. Depth Bias Correction
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SCTransform (Seurat)
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Scaled Pearson residual

SCTransform (Seurat)
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SCTransform (Seurat)

OBS! SCTransform function in Seurat also does
variable gene selection in the same step with a
slightly different method than the default in Seurat.

But you can also specify which genes to run it on.

You can also run regression of other parameters in
the same step.

Should be run per sample not with all data together.
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Zero-Inflated Negative Binomial-based Wanted
Variation Extraction (ZINB-WaVE).

* Both gene-level and sample-level covariates

e Extension of the RUV model

J genes

log u
Known sample-level covariates =~ Known gene-level covariates Unknown sample-level covariates
n samples K J

M J L J
VI A
X + [N +
n n

J genes n
logit 7 Observed Unknown Unknown Observed Unobserved  Unknown
random parameter parameter random random parameter
n samples variable variable variable
X intercept acts as a Vintercept acts as a sample-
gene-specific scaling factor specific scaling factor
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ZINB-WaVE

Reduces technical influence on PCA, also batch effect.
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Size factors with different normalizations
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DE with different normalizations

b Trade-off between power and false discoveries (pAUC)
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Imputation

* scRNAseq has a lot of zeros in expression matrix
e Common for GWAS data to impute SNPs

* Many methods recently published:
— SAVER
— Drimpute
— scimpute
— MAGIC
— Knn-smooth
— Deep count autoencoder
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Imputation can introduce false correlations
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Performance of normalisation methods using filtered or imputed counts (pAUC)

Imputation has little effect on DE detection
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Normalization + imputation comparison
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Scaling data — Z-score transformation

e 7-score transformation - linearly transform data to a
mean of zero and a standard deviation of 1.

 PCA or any other type of analysis will be dominated
by highly expressed genes with high variance.

* |t can be wise to center and scale each gene before
performing PCA

/
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What normalization should you use?

Normalization has big impact on differential gene
expression, but not as much on clustering

In most cases it is enough to do sequence depth
normalization and log-normalization.

When working with highly similar subtypes of the
same celltype, or with celltypes of very different
sizes, individual size factors could help.

Binning by gene level (SCTransform) helps to remove
the effect of different gene detection across cells.
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Confounding factors

* Any source of variation that you do not expect to
give separation of the cell types.
— Cell cycle
— Cell size
— Sequencing depth
— Cell quality
— Batch
— More...

/
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Linear regression

Fit a line to the gene
expression vs variable
of interest

Calculate residuals

<

Remove variance
explained by the Y .
variable of interest by )
taking the residuals.

Multiple linear
regression if multiple X
factors.
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Other tools to remove unwanted variance

RUVseq() or svaseq()

Linear models with e.g. removeBatchEffect() in
limma or scater

ComBat() in sva

Tools like SCTransform, ZIMB-WaVE does regression
in the same step.
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What confounders should you remove?

e Percent mitochondrial reads — often correlates with
quality of cell

* Sequencing depth

* Gene detection rate — relates to amount of RNA per
cell.

* Cell cycle

e Batch effects (Sample, sort date, sex, etc.)

ALWAYS check QC parameters after analysis and see
how they influence your data.

BUT, be careful that your confounders are not related
to your biological question!
\\
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Scaling and regression in practice

e Seurat ScaleData: does Z-score transformation and
regression of variables in vars.to.regress. Can use
linear (default), poisson or negbiom models.

e Scran: runs scaling but not centering automatically in
PCA step. trendVar function estimates unwanted
variation either with a design matrix or with block

factors. decomposeVar or denoisePCA to remove
unwanted variation.

e Scanpy: pp.regress_out and pp.scale functions.
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Predict cell cycle stage / scores

e Seurat — CellCycleScoring — builds on G2M- & S-
phase human gene lists from Tirosh et al. paper

e Scran — cyclone function — trained on mouse cell

cycle sorted cells. Uses relative expression of pairs of
genes.

* Scanpy - tl.score_genes_cell _cycle — uses same gene
list as Seurat

/
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OBS! Seurat "Phase” predictions use a fixed cutoff.
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Cell cycle removal

Regression on cell cycle scores.

— Either with S.Score and G2M.Score
— Or with Diff = S.Score — G2M.Score

scLVM - Designed for cell-cycle variation correction.
Also has correction of other confounding variables.

ccRemover (stable version from CRAN). “ccRemover
outperforms scLVM slightly.”

Oscope
reCAT
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Selecting genes

Excluding invariable genes that do not contribute
informative/interesting information

— Improved signal to noise ratio

— Reduced computational requirements

Highly variable genes (HVGs)

Correlated gene pairs/groups
Top PCA loadings

<O .
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Variable gene selection

Genes which behave differently from a null model
describing technical noise

— Mean-variance trend: genes with higher than expected
variance

— Coefficient of variation (Brennecke et al. 2013)
High dropout genes

— Number of zeros unexpectedly high compared to null
model

g Sci
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Highly variable genes (HVGs)

var

CV = =

o
mean U

Fit a gamma
generalized linear
model

0.01 - No ERCCs?
, , , : : : : -> estimate technical

04 1 10 100 10° 10* 10° noise based on

Average normalized read count all genes

N B?S (Brennecke et al. Nature Methods 2013) SCIL}ﬁiLab
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HVGs with spike-in controls — normalization matters

\'\
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M3Drop

e Reverse transcription is an enzyme reaction thus can
be modelled using the Michaelis-Menten equation:
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Seurat: FindVariableFeatures

Fits a line to the relationship of log(variance) and log(mean) using
local polynomial regression (loess). Then standardizes the feature
values using the observed mean and expected variance. Feature
variance is then calculated on the standardized values after clipping
to a maximum.

Standardized Variance
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Varaiable gene selection in practise:

* Non-variable count: 16121
« Variable count: 2000
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Varaiable gene selection in practise:

Scran: ModelGeneVar & getTopHVGs

Model the variance of the log-expression profiles for each gene,
decomposing it into technical and biological components based on a
fitted mean-variance trend.

Can include blocking parameters in “design”.
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Varaiable gene selection in practise:

Scanpy: sc.pp.highly variable genes

Implements same method as Seurat

Can specify “batch_key” and calculate per batch then combine the
values.
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Conclusions

Normalization has big impact on differential gene
expression.

Many different methods to remove unwanted
variance — often an important step!

Selection of variable genes is important to remove
noise in the data. Always subset genes before
running PCA/clustering.

Always aim for same sequencing depth in all samples
— to avoid at least one confounding factor.
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Do not worry!

If you have distinct celltypes — the clustering will be the
same regardless of how you treat the data.

But, for subclustering of similar celltypes normalization
and removal of confounders may be crucial.

/
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