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A general single cell analysis workflow SC1L9%Lab
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Why dimensionality reduction? NRASTRUCTURE SWEDEN
y y SCiLy%Lab
2 dim.
Simplify complexity, so it becomes easier to work with. ¢ ¢
Reduce number of features (genes) _g- E.
In some: Transform non-linear relationships to linear @ ©
2 2.
“Remove” redundancies in the data
non-linear linear
Identify the most relevant information (find and filter
noise) »

Reduce computational time for downstream
procedures Fit-SNE
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Facilitate clustering, since some algorithms struggle
with too many dimensions

FISNE_2
-

Data visualization
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Some dimensionality reduction algorithms Sl Lab

They can be divided into 3 major groups:

mm) PCA linear ~ Matrix Factorization
ICA linear Matrix Factorization
MDS non-linear Matrix Factorization

. . . . https://pdfs.semanticscholar.org/664d/40258f12ad28ed0b7d4
Sparce NNMF  non-linear Matrix Factorization 2010 €2729352d72a150db.pdf

cPCA non-linear Matrix Factorization 2018 https://doi.org/10.1038/s41467-018-04608-8
ZIFA non-linear Matrix Factorization 2015 https://doi.org/10.1186/s13059-015-0805-z
ZINB-WaVE non-linear Matrix Factorization 2018 https://doi.org/10.1038/s41467-017-02554-5
Diffusion maps non-linear graph-based 2005 https://doi.org/10.1073/pnas.0500334102
Isomap non-linear graph-based 2000 10.1126/science.290.5500.2319
‘ t-SNE non-linear graph-based 2008 https://lvdmaaten.github.io/publications/papers/JIMLR_2008.pdf
- BH t-SNE non-linear graph-based 2014 https://lvdmaaten.github.io/publications/papers/JIMLR_2014.pdf
- FIt-SNE non-linear graph-based 2017 arXiv:1712.09005
LargeVis non-linear graph-based 2018 arXiv:1602.00370
UMAP non-linear graph-based 2018 arXiv:1802.03426
PHATE orrEar graph-based 2017 glt:EIT.:é/d\glww.blorxw.org/content/blorxw/earIy/2018/06/28/12037
scvis non-linear Autoencoder (MF) 2018 https://doi.org/10.1038/541467-018-04368-5
VASC non-linear Autoencoder (MF) 2018 https://doi.org/10.1016/j.gpb.2018.08.003

... and many more
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PCA

Principal Component Analysis
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It is a LINEAR algebraic method of dimensionality reduction.

It is a case inside Singular Value Decomposition (SVD) method (data compression)
Any matrix can be decomposed as a multiplication of other matrices (Matrix Factorization).
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How PCA works
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How PCA works Sl L

PC1 explains >98% of the variance

g P T,
(,"/‘.” 4 ‘4
1 PC thus represents 2 genes very well 1 < 1 <
“Removing” redundancy - ‘,o" » -
PC2 is nearly insignificant in this example v N v
Could be disregarded
In real life ...
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PCA in single cell data s

PC1 and PC2 are commonly
® . correlated to sequencing depth

:'ch and cell heterogeneity/complexity
ILC3
O Nk

(but not always ...)
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PCA: Summary Sc1Ly%Lab

To keep in mind:

It is a LINEAR method of dimensionality reduction

* Itis an interpretable dimensionality reduction

* Datais usually SCALED prior to PCA (Z-score | see ScaleData in the Seurat)
* The TOP principal components contain higher variance from the data

e Can be used as FILTERING, by selecting only the top significant PCs
e PCs that explain at least 1% of variance
e Jackstraw of significant p-values
e The first 5-10 PCs

Problems:
* It performs poorly to separate cells in O-inflated data types (because of it non-linearity
nature)

* Cell sizes and sequencing depth are usually captured in the top principal components
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A very brief intro to
graphs
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 Each dotis a cell (or a gene)

e Each line represents a connection
between 2 cells

e Each connection can be weighted as

20130 40 &0 80 1D 80 a proximity between cells
This is a PLOT This is GRAPH - Correlation (high and positive)
(a.k.a. network) - Euclidean distance (low)
- etc.
84 adjacency weighthed unweighted
correlation (1-cor)/2 KNN (k=5) KNN (k=5)
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b4 adjacency weighthed unweighted
correlation (1-cor)/2 KNN (k=5) KNN (k=5)
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1 2
Graph-based dimensionality reduction algorithms can be divided into 2 main steps:

1. Construct a weighted graph based on the top k connections
(a.k.a. k-nearest neighbors, KNN)

2. The low dimensional layout of the graph is computed and optimized
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tSNE
t-Stochastic Neighborhood Embedding
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It is @ graph-based NON-LINEAR dimensionality reduction

Manifold:

distance in PCA space
(euclidean distance)

=
distance in t-SNE space
In other words, t-SNE calculates the distances based on the distance to the neighbor cell

& Src: http://web-ext.u-aizu.ac.jp/~shigeo/home.html
& Maaten et al (2008) Journal of Machine Learning Research
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High Low
dimension dimension
(] o [ o
o °®
® t-distribution =
\=mi \=%ﬁ
Z distribution

(standard normal)

t-distribution
(n close to 30)

t-distribution

Pjii and (;; measure the conditional probability that a
point I would pick pointj as it’s nearest neighbor, in

high (p) and low (q) dimensional space respectively.
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Higher KL divergence

f\w (cost / error)

‘ iterations
e O ® N
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‘ iterations
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‘ iterations

<@ Lower KL divergence
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(cost / error)

gene B

gene A

The same concept applies to embedding into 2 dimensions
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t-SNE hyper-parameters Sl iLab

* Barnes-Hut’s tSNE implementation - O(n log n)
Rtsne & Seurat & viSNE (MATLAB)

& Maaten (2014) Journal of Machine Learning Research

The definition of the t-SNE and the chances of converging correctly depends on the
hyper-parameters (“tuning” parameters).

t-SNE has over 10 hyper-parameters that can be optimized for your specific data.

The most common hyper-parameters are:
e Perplexity

* Number of iterations

* Learning rate

* Theta (for BH t-SNE)

Check this link: https://distill.pub/2016/misread-tsne/



https://distill.pub/2016/misread-tsne/
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Important notes about t-SNE MRS
P SCiLfeLab
* Unlike PCA, it is a stochastic algorithm, so it will Converged successfully

never produce the same output (unless you use
a seed () to lock the random estimators).

* The cost function never reaches the minima,
and it is not an indicator how good the graph
looks.

e The cost function in t-SNE minimizes the Failed to converge
distance between similar points (and ignore the
distant ones — local embedding)

The distances within a group are slightly
meaningful, but not between groups!

v

e To add more samples, you need to re-run the
algorithm from start.
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Efficient t-SNE implementation IS

Runtime (hours)

SCiLyfeLab

Fast Fourier Transform-accelerated Interpolation-based t-SNE - O(n)

15.0

5.0 -

107

0.1 -

2 Dimensional Embedding

©BH®F

10k

100 K
Number of Points

500 k 1 M

& Linderman et al (2017) BioRxiv

50

25+

FItSNE_2
o

250k cells
1 hour

50, . , , ;
-50 -25 0 25 50
FISNE_1

Linderman et al 2017 / Seurat Pipeline
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t-SNE: summary SchﬁLab
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To keep in mind:

* Itisa NON-LINEAR method of dimensionality reduction

* It was the GOLD-STANDARD method in single cell data (including scRNA-seq)

e Can be run from the top PCs (e.g.: PC1 to PC10)

Problems:

* It does not learn an explicit function to map new points

* It’s cost function is not convex — This means that the optimal t-SNE cannot be computed
* Too many hyper-parameters to be defined empirically (dataset-specific)

* It does not preserve a global data structure (when using default parameters)
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UMAP

Uniform Manifold Approximation and
Projection
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It is based on topological structures in multidimensional space (simplices)

Points are connected with a line (edge) if the distance between them is below a
threshold:

- Any distance metric can be used (euclidean)

0.1) A
(g1,82,83,84,85,..) ® *r—e

0-simplex 1-simplex 2-simplex 3-simplex

This way, by constructing the simplicial
complexes beforehand allows UMAP to
calculate the relative point distances in the
lower dimension

(instead of randomly assigning as in tSNE)

& Mclnnes et al (2018) BioRxiv
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How UMAP works NIOuA BonFoRICs
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The distance in the manifold are the same, but not in the REAL space.

The distance is now “variable” in the REAL space for each point (t-SNE was fixed)

& Mclnnes et al (2018) BioRxiv
& https://umap-learn.readthedocs.io/en/latest/how _umap_works.html



https://umap-learn.readthedocs.io/en/latest/how_umap_works.html
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Embedding stability under subsampling
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UMAP hyper-parameters A

UMAP assumes that there is a manifold in the dataset, it could also tend to cluster noise.

As for t-SNE, checking the parameters is also important.

n_neighbors = 5 n_neighbors = 20 n_neighbors = 80 n_neighbors = 320

= 0.0125

min_dist

=0.05

min_dist

Embedding of random noise

=0.2

min_dist

=0.8

min_dist

& Mclnnes et al (2018) BioRxiv
& https://umap-learn.readthedocs.io/en/latest/parameters.html



https://umap-learn.readthedocs.io/en/latest/parameters.html
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UMAP hyper-parameters A

UMAP’s improvements allows much faster computations compared to current state-
of-the-art methods.

Performance Comparison of UMAP, t-SNE, FIt-SNE and LargeVis (log-log)

e UMAP
+SNE
8 core t-SNE
FIt-SNE
LargeVis

204
10°

+ & » X

10°

104

UMAP2

10°

250k cells -
7 min

10?

Time taken for dimension reduction (s)

10

-204

104 10 106 -20 -10 0 10
Number of data points UMAP1

& Mclnnes et al (2018) BioRxiv
& Becht & Mclnnes et al (2019) Nat Biot
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UMAP: Summary ScheLWab
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To keep in mind:

It is a NON-LINEAR graph-based method of dimensionality reduction

* Itisthe current GOLD-STANDARD method in single cell data (including scRNA-seq)
* Very efficient - O(n)

e Can be run from the top PCs (e.g.: PC1 to PC10)

* Itis nolonger completely stochastic as t-SNE

* Defines both LOCAL and GLOBAL distances

e Can be applied to new data points

& Mclnnes et al (2018) BioRxiv
& Becht & Mclnnes et al (2019) Nat Biot
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Wrap-up
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Seurat v3 Scater Pagoda v2 Monocle v3 Scanpy
) PCA PCA PCA PCA PCA
ICA - - ICA _
- MDS - - i}

mm) tSNE (BH, FIt)  tSNE (BH) tSNE (BH) tSNE (BH) tSNE (BH)

—> UMAP UMAP - UMAP UMAP
- - LargeVis - -
Diff. Maps Diff. Maps Isomap - Diff. Maps
- - - DDRTree -
PHATE : - - -
- - - SimplePPT -

Paper comparing lots of dimensionality reduction techniques:
https://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf



https://www.biorxiv.org/content/biorxiv/early/2018/06/28/120378.full.pdf

Thank youl!

Paulo Czarnewski, ELIXIR-Sweden (NBIS)
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