Introduction to Exercises

Susanne Reinsbach susanne.reinsbach@scilifelab.se

31.03.2025

Outline

- Data set
- Analysis steps
- Toolkits and data structures
- Labs setup
- Practical information
- Demo

Data set

- Selected 4 controls and 4 severe COVID-19 cases
- Cells are subsampled to 1500 cells per subject
- Aim: Which cell types and genes are altered when comparing blood immune cells from healthy vs disease?
- Note: Trajectory and spatial transcriptomics lab have different data sets

https://nbisweden.github.io/workshop-scRNAseq/other/data.html

https://www.science.org/doi/10.1126/sciimmunol.abd1554

Overview analysis steps

Торіс	R Seurat	R Bioconductor	🇬 Scanpy
1 🖹 Quality Control			
2 🏷 Dimensionality reduction			
3 🚏 Data integration		E 1	
4 🛠 Clustering			
5 II Differential expression			
6 🛷 Celltype prediction			
7 🖋 Trajectory inference			

https://nbisweden.github.io/workshop-scRNAseq/home_contents.html

Three main toolkits

	Toolkits				
	Seurat v5	Bioconductor	scanpy •		
Language	R	R	Python		
Data structure	SeuratObject	SingleCellExperiment Object	AnnData		
Key features	 + Actively maintained (by Satija Lab) + Open source + Single R package + Specifically designed for single cell analysis (spatial and multimodal analysis) 	 + Community-developed + Open source + Interoperability across single-cell related packages - Scalability 	 + Community-developed (part of scverse project) + Open source + Interoperability with Python ML libraries + Scalable 		

SeuratObject

@ assays:	: List of assays for count data
\$ RNA:	: Formal class 'Assay5'
	<pre>layers: List of data matrices (features x barcodes)</pre>
•••••	\$ counts: raw counts
••••••	\$ data: normalized counts
•••••	\$ scale: scaled counts
@ meta.da	ata: data.frame containing metadata for barcodes/ce
@ active.	.assay: "RNA"
@ reducti	ions: List of dimensional reduction objects
\$ pca:	: (components x barcodes)

> slotNames(alldata)

[1]	"assays"	"meta.data"	"active.assay"	"active.id	ent" '	'graphs"	"neighbors"
[7] [13]	"reductions" "tools"	' "images"	"project.name"	"misc"	"version	ר" com	mands"

https://satijalab.org/seurat/articles/essential_commands.html

SingleCellExperiment Object

https://bioconductor.org/books/3.13/OSCA.intro/the-singlecellexperiment-class.html

AnnData Object

https://scanpy.readthedocs.io/en/stable/usage-principles.html

Containerized environments

- For each toolkit a Docker image is created
- A Docker **container** is a running instance of a Docker **image**
- Docker containers are isolated environments with all the dependencies required for the analysis
- Choose a toolkit and run the Docker containers on SciLifeLab
 Serve or locally and access them through your browser

https://nbisweden.github.io/workshop-scRNAseq/other/containers.html

NBIS course

NBIS / Elixir workshop

Tools for Reproducible Research

How to work reproducibly with control and structuring of project code, environment and workflow management

Updated: 03-03-2025 at 12:38:14.

snakemake

https://nbisweden.github.io/workshop-reproducible-research

Running the labs

- The code for the exercises needs to be downloaded from the terminal in Rstudio or JupyterLab
- The code is available as Quarto notebooks (.qmd) for Seurat and Bioconductor and Jupyter notebooks (.ipynb) for Scanpy
- Please report errors in the code
 - Slack channel #exercises
 - Open an issue in the GitHub repository
 - The corrected code needs to be downloaded again using the download script

Getting help

- Ask for help in the Slack channel #exercises and a TA will help answering your question
- Before asking, please try to do some troubleshooting
 - Read the error messages carefully, most of the times the answer can be found there
 - Ask Google (or ChatGPT)
 - Check forums like SEQanswers, Stack Exchange, Bioconductor Forum or GitHub issues for the relevant package

Practical information

- For the exercises and the discussion points you are encouraged to talk with other course participants in your breakout room
- A summary of each lab will be given in the last 10 minutes of each exercise
- If you have time, experiment with different options in the algorithms

Demo

