
  

Dimension Reduction for Single Cell Data Analysis
Nikolay Oskolkov, Lund University, NBIS SciLifeLab, Sweden

scRNAseq course, 13.02.2024

Image adapted from McInnes et al. 2018

@NikolayOskolkov

github.com/NikolayOskolkov



  

Dimensionality reduction
is also supposed to ... reduce dimensions



  

Dimension reduction: more than visualization

The goal of dimension reduction is not only visualization but also reducing dimensions



  

Biological data are usually high dimensional

N

P

Statistical observations: 
e.g. samples, cells etc.

Features: genes, proteins, 
microbes, metabolites etc.

N data points

P dimensions

 High Dimensional Data: 
P

 
>> N

For a robust statistical analysis, one should
properly “sample” the P-dimensional space,
hence large sample size is required, N >> P



  

Types of Data Analysis 
P is the number of features (genes, proteins, genetic variants etc.)
N is the number of observations (samples, cells, nucleotides etc.)

The Curse of 
Dimensionality

Amount of Data

Bayesianism Frequentism Machine LearningMathematical modeling

N << P N ≈ P N >> PN → 0

Biology / Biomedicine

Data DrivenHypothesis Driven

We need to reduce dimensions 
to overcome 

the Curse of Dimensionality!



Literature on the Curse of Dimensionality

Altman N, Krzywinski M. The curse(s) of dimensionality. Nat Methods. 2018 
Jun;15(6):399-400. doi: 10.1038/s41592-018-0019-x. PMID: 29855577.

Correcting for multiple testing does not solve
the problem of too many false-positive hits



  

Dimension reduction techniques:
linear vs. non-linear



  

Linear dimensionality reduction

M.Bartoschek, N. Oskolkov et al.,
Nature Communications 2018



  

Non-linear dimensionality reduction

M.Bartoschek, N. Oskolkov et al.,
Nature Communications 2018
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Data Low-dimensional
data representation
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Linear dimension reduction: matrix factorization 



  

data_centered <- scale(data, center = TRUE, scale = FALSE)

covariance <- t(data_centered) %*% data_centered

eig <- eigen(covariance)

plot(eig$vectors[,1:2]);                        barplot(eig$values / sum(eig$values))

PCA dimension reduction algorithm
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A = (1/N)*MT*M

A*u = λ*u

Coding in R: Mathematically:

It can be analitically derived that
the eigen value decomposition in PCA

is equivalent to projecting data on axes
of maximal variation in the data



  

Estimating the number of informative PCs

Tracy-Widom approach

In Seurat:
JackStraw



  

PCA works fine on a linear manifold



  

PCA vs. tSNE vs. UMAP on non-linear manifold



  

Why PCA can’t unwrap the Swiss Roll 



  

Non-linear dimension reduction: 
neigborhood graph

1) Construct high-dimensional graph

p
ij

2) Construct low-dimensional graph
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3) Collapse the graphs together

Kullback-Leibler divergence



  

tSNE dimension reduction algorithm



  

PCA vs. tSNE
when number of populations increases

Three classes of data points Ten classes of data points



  

Van der Maaten: “Loosely speaking, one could say that a larger / denser dataset requires a larger perplexity.“

log(Perp) = -0.179 + 0.51*log(N)

Perp ~ N^(1/2)

How to select optimal perplexity



  

tSNE does not scale for large data sets?

tSNE does not preserve global structure?

tSNE can only embed into 2-3 dims?

tSNE performs non-parametric mapping
(no variance explained statistics)?

tSNE can not work with high-dimensional 
data directly (PCA needed)?

tSNE uses too much RAM at large perp?

Limitations of tSNE and promise of UMAP



  

How is UMAP different from tSNE

UMAP uses local connectivity for high-dim probabilities

UMAP does not normalize probabilities (speed-up)

This is similar to tSNE cost function This term is UMAP specific

UMAP uses Laplacian Eigenmap for initialization

UMAP uses Cross-Entropy (not KL) as cost function

UMAP can deliver a number of components for clustering



  

tSNE vs. UMAP:
global structure preservation



  
X → infinity, Y can be any X → infinity, Y → infinity

Cost function seems to make UMAP
preserve more of global structure than tSNE



  

Why preserving global structure is important

Can large perplexity 
solve the problem 
of global structure 
for tSNE?



  

Why preserving global structure is important

Can large perplexity 
solve the problem 
of global structure 
for tSNE?



  

KL-gradient goes to zero at large perplexity



  

tSNE degrades to PCA on non-linear manifold at large perplexity



  

Attempts to balance local and global structure

Graph Laplacian, Laplacian Eigenmap, spectral clustering,
diffusion maps, spectral dimension reduction methods etc.

S=

L = I - D-1 * S
L * u = λ * u

P = D-1 * S
Pt * u = λt * u

D=

Laplacian
Eigenmap

Diffusion
Maps

Moon et al., Nat Biotechnol. 2019; 37(12):1482-1492



  

Variance explained by
PCA, tSNE and UMAP



  

Variance explained by PCA components

( 11% )

( 
8%

 )



  

Variance explained by UMAP components

( 7% )

( 
4%

 )



  

MNIST labels variance explained 
by UMAP components



  

National Bioinformatics 
Infrastructure Sweden (NBIS)
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