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NB:3S Brief introduction: who am | '\‘ Scilifel ab

2007 PhD in theoretical physics

2011 medical genetics at Lund University

2016 working at NBIS SciLifeLab, Sweden

Single cell

Biomedical data integration
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NB:2S ! ScilifeLab

Dimensionality reduction
is supposed to ... reduce dimensions



NB;S Dimension reduction: more than visualization .\‘ SciLifel ab
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The goal of dimension reduction is not only visualization but also reducing dimensions



> Literature on the Curse of Dimensionality

POINTS OF SIGNIFICANCE

The curse(s) of dimensionality

There is such a thing as too much of a good thing.

Naomi Altman and Martin Krzywinski

e generally think that more 100 -
information is better than less. 1
However, in the ‘big data’ era,

the sheer number of variables that can
be collected from a single sample can be
problematic. This embarrassment of riches
is called the ‘curse of dimensionality’ (CoD)
and manifests itself in a variety of ways.
This month, we discuss four important
problems of dimensionality as it applies to ¥
data sparsity'*, multicollinearity’, multiple
testing' and overfitting’. These effects are
amplified by poor data quality, which may
increase with the number of variables.
Throughout, we use # to indicate the
sample size from the population of interest
and p to indicate the number of observed
variables, some of which may have missing
values for some samples. For example, we
may have n = 1,000 subjects and p = 200,000
single-nucleotide polymorphisms (SNPs).
First, as the dimensionality p increases,
the ‘volume’ that the samples may occupy

A%

Fig.1| Data tend to be sparse in higher
dimensions. Among 1,000 (x, y) points in which
both x and y are normally distributed with a mean
of 0 and s.d. 6 =1, only 6% fall within & of (x, y)
= (1.5, 1.5) (blue circle). However, when the data
are projected into a lower dimension—shown by
histograms—about 30% of the points (all bins

A and 100 to have the minor allele a. If we
tabulate on two SNPs, A and B, we will
expect only ten samples to exhibit both
minor alleles with genotype ab. With SNPs
A, Band C, we expect only one sample to
have genotype abc, and with four or more
SNPs, we expect empty cells in our table. We
need a much larger sample size to observe
samples with all the possible genotypes. As p
increases, we may quickly find that there are
no samples with similar values of a predictor.

Even with just five SNPs, our ability to
predict and classify the samples is impeded
because of the small number of subjects that
have similar genotypes. In situations where
there are many gene variants, this effect is
exacerbated, and it may be very difficult to
find affected subjects with similar genotypes
and hence to predict or classify on the basis
of genetic similarity.

If we treat the distance between points
(e.g., Euclidian distance) as a measure of
similarity, then we interpret greater distance

Altman N, Krzywinski M. The curse(s) of dimensionality. Nat Methods. 2018
Jun;15(6):399-400. doi: 10.1038/s41592-018-0019-x. PMID: 29855577.
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Fig. 3 | The number of false positives increases
with each additional predictor. The box plots
show the number of false positive regression-fit
P values (tested at & = 0.05) of 100 simulated

multiple regression fits on various numbers
of samples (n =100, 250 and 1,000) in the

presence of one true predictor and k = 10 and

50 extraneous uncorrelated predictors. Box

plots show means (black center lines), 25th and
75th percentiles (box edges), and minimum and
maximum values (whiskers). Outliers (dots)

are jittered.

Correcting for multiple testing does not solve
the problem of too many false-positive hits




NB:2S ! ScilifeLab

Dimension reduction techniques:
linear vs. non-linear
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Linear dimensionality reduction SciLifelLab

Principal Component Analysis (PCA) Independent Component Analysis (ICA) Factor Analysis (FA)
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Non-linear dimensionality reduction

Modified Locally Linear Embedding (LLE)

SciLifeLab

Locally Linear Embedding (LLE) Kernel PCA

LLE2
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Linear dimensionality reduction
(MDS, PCA)
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Xij ~ Uikaj
P
X TIMED

P D
Loadings

~ N

D < P hence dimensionality

Data Low-dimensional reduction. What D is good?

data representation
(embeddings)

N P
Loss = Z (X5 — Uikaj)2
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Estimating the number of informative PCs

NB:=S

"\ SciLifeL.ab

PCA: MNIST
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NB?S PCA golden standard in PopGen: still criticized 0\‘ Scilifel ab

www.nature.com/scientificreports

scientific reports

[ e
OPEN Principal Component Analyses
(PCA)-based findings in population
genetic studies are highly biased
and must be reevaluated

Eran Elhaik

Principal Compenent Analysis (PCA) is a multivariate analysis that reduces the complexity of datasets
while preserving data covariance. The outcome can be visualized on colarful scatterplots, ideally
with only a minimal loss of infc ion. PCA applicati impl d in well-cited pach like
EIGENSOFT and PLINK, are extensively used as the foremost analyses in population genetics and
related fields (e.g., nmmal and plant ormgdlnl genetics). PCA outcomes are wsed to shape study
design, identify, and durangnzg divids d populations, and draw hi rical and ethnobiclogical
ions on origins, di i nnd lated The replicability crisis in science has
prompted us to evaluate whelher PCA results are reliable, robust, and replicable. We analyzed twelve
common test cases using an intuitive color-based model al; ide human population data. We
demonstrate that PCA results can be artifacts of the data and can be easily manipulated to generate
desired outcomes. PCA adjustment also yielded unfavorable outcomes in association studies. PCA
results may not be reliable, robust, or replicable as the field assumes. Our findings raise concerns
about the validity of results reported in the population genetics literature and related fields that place
a disproportionate reliance upon PCA outcomes and the insights derived from them. We canclude that
PCA may have a biasing ml! in g!n!tl: investigations and that 32,000-216,000 genetic studies should
be !l d.An dmixture population genetic mndd is discussed.

The ongoing reproducibility crisis, undermining the fuundilnm o sciencc!, raises various concerns ranging
from study design Lo statistical rij genetic d 'bylls ilization of small sampl
ignorance of effect sizes, and adoplnon nl'quesrmniblc sl.udy designs. The field is relatively small and may invelve
financial intcrests**and cthical dilcmmas™ Since biases in the fcld rapidly ropaga to related disciplines like
medical genetics, biogeography, association studies, forensics, and in humans and

alike, it is imperative to ask whether and 1o what extent our most elementary tools satisfy risk criteria.

Principal Component Analysis (PCA) is a multivariate analysis that reduces the data’s dimensionality while
preserving their covariance. When applied to genotype bi-allelic data, typically encoded as AA, AB, and BB, PCA
finds the eigenvalues and eigenvectors of the covariance matrix of allele frequencies. The data are reduced to a
small number of di fons termed principal p (PCs); each describes a decreased proportion of the
genomic variation. Genotypes are then projected onto space spanned by the PC axes, which allows visualizing
the samples and their distances from one another in a colorful scatter plot. In this visualization, sample overlap
is considered evidence of identity, due to common origin or ancestry™'. PCA's most attractive property for
population geneticists is that the distances between clusters allegedly reflect the genetic and geographic distances
between them. PCA also supports the projection of points onto the components calculated by a different dataset,

umably accounting for insufficient data in the projected dataset. Initially adapted for human genomic data in
1963'", the popularity of PCA has slowly increased over time. It was not until the release of the SmartPCA tool
(EIGENSOFT package)'® that PCA was propelled to the front stage of population genetics.

PCA is used as the first analysis of data i igation and data description in most lation genetic analyses,
eg., Refs 1% It has a wide range of applications. It is used to examine the population structure of a cohort or
individuals to determine ancestry, analyze the demographic history and admixture, decide on the genctic simi-
larity of samples and exclude outliers, decide how to model the populations in downstream analyses, describe
the ancient and modern genetic relationships between the samples, infer kinship, identify ancestral clines in the
data, e g, Refs.'*"%, detect genomic signatures of natural selection, e.g., Ref* and identify convergent evolution®.
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PC2 (0.64% )

PCA has a known pitfall: ScilLifel.ab
uneven sampling of populations
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NB?S PCA for Single Cell applications ScilifelLab

3k Peripheral Blood Mononuclear Cells (PBMC) available from 10X Genomics
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Two principal components (PCs) seem to be insufficient to fully reveal heterogeneity in single cell gene expression data.

Solution: use more PCs or tSNE / UMAP

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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& PCA vs. tSNE: when data complexity grows SciLifeLab

Three classes of data points Ten classes of data points
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PCA and tSNE tell the same story tSNE is more informative than PCA

Oskolkov et al., unpublished



tSNE2

PCA works fine on a linear manifold SciLifeLab

Dimension 2
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Principal Component Analysis (PCA)
PCA1l
UMAP

tSNE

PCA vs. tSNE vs. UMAP on non-linear manifold
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NB3S  Why PCA can't unwrap the Swiss Roll Seilifel ab

MDS Linkages LLE Linkages (100 NN)
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Nonlinear dimensionality reduction
(tSNE, UMAP)



NB;S Non-linear dimension reduction: Silifelab
neighborhood graph

1) Construct high-dimensional graph

3) Collapse the graphs together

Kullback-Leibler divergence




Original data

NB:S

Compute high dimensional affinities

exp(—||x — x| [*/20?)

Optimize using

gradient descent
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NB:3S How to select optimal perplexity Scilifel ab

Van der Maaten: “Loosely speaking, one could say that a larger / denser dataset requires a larger perplexity.*©

PERPLEXITY VS. NUMBER OF CELLS: LOGARITHMIC SCALE
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log(Perplexity) = —0.179 + 0.51 - log(N)

Perplexity ~ N :



NB;S Limitations of tSNE and promise of UMAP

tSNE does not scale for large data sets?

tSNE does not preserve global structure?

tSNE can only embed into 2-3 dims?

tSNE performs non-parametric mapping
(no variance explained statistics)?

tSNE can not work with high-dimensional
data directly (PCA needed)?

tSNE uses too much RAM at large perp?

tSNE2

tSNE MNIST

SciLifeLab
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& How is UMAP different from tSNE SciLifeLab

d tadq] — Mi
UMAP uses local connectivity for high-dim probabilities 5 (zi,zj) — p

Dij =€ gi

UMAP MNIST

UMAP does not normalize probabilities (speed-up)

UMAP can deliver a number of components for clustering %

UMAP uses Laplacian Eigenmap for initialization

UMAP uses Cross-Entropy (not KL) as cost function

CB(X,Y) =33 [m/m og (2257 ) + 1 pim/log( — %gf;)]

This is similar to tSNE cost function This term is UMAP specific
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tSNE vs. UMAP:
global structure preservation



Cost function seems to make UMAP .3 1
NB;S preserve more of global structure than tSNE ’ SciLifelab

X — infinity, Y can be any X — infinity, Y — infinity



Dimension 2

tSNE2

}3 Why preserving global structure is important ScilLifelLab

Original World Map Data Set tSNE: Perplexity = 500
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NB;S KL-gradient goes to zero at large perplexity 0\’ ScilifelLab

tSNE: KL-Gradient at Different Perplexities
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B;S tSNE degrades to PCA on non-linear manifold at large perplexity

Swiss Roll: 3023 points
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Principal Component Analysis (FCA)
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NB;S Attempts to balance local and global structure o“ ScilifeLab
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Autoencoders
for dimension reduction of single cell data
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1) Dimensionality reduction: visualization
2) Clustering of cells: discover cell populations

Single Cell analysis is unsupervised

le cell analys

ing

Input Layer
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Autoencoder for s

Autoencoder is an unsupervised
Artificial Neural Network (ANN)
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Output Layer



Principal Component Analysis (PCA)
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Variance explained by
PCA, tSNE and UMAP
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UMAPZ (4%
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UMAP in Population Genomics
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-~ - UMAP for
Population Genomics
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The specious art of single-cell genomics

Tara Chari ',LiorPachter 12
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United States of America, 2 Department of Computing and Mathemalical Sciences, California Institute of
Technology, Pasadena, California, United States of Amarica

* Ipachter@caltech.adu

Abstract

Dimensionality reduction is standard practice for filtering noise and identifying relevant fea-
tures in large-scale data analyses. In biology, single-cell genomics studies typically begin
with reduction to 2 or 3 dimensions to produce “all-in-one” visuals of the data that are ame-
nable to the human eye, and these are subsequently used for qualitative and quantitative
exploratory analysis. However, there s little theoretical support for this practice, and we
show that extreme dimension reduction, from hundreds or thousands of dimensions to 2,
inevitably induces significant distortion of high-dimensional datasets. We therefore examine
the practical implications of low-dimensional embedding of single-cell data and find that
extensive distortions and inconsistent practices make such embeddings counter-productive
for exploratory, biological analyses. In lieu of this, we discuss alternative approaches for
conducting targeted embedding and feature exploration to enable hypothesis-driven biologi-
cal discovery.

Introduction

The high-dimensionality of "big data” genomics datasets has led to the ubiquitous application
of dimensionality reduction to filter noise, enable tractable computation, and to facilitate
exploratory data analysis (EDA). Ostensibly, the goal of this reduction is to preserve and
extract local and/or global structures from the data for biological inference [1=3]. Trial and
error application of common techniques has resulted in a currently popular workflow combin-
ing initial dimensionality reduction to a few dozen dimensions, often using principal compo-
nent analysis (PCA), with further nonlinear reduction to 2 dimensions using t-SNE [4] or
UMAP [1,2,5,6]. For single-cell genomics in particular, these embeddings are used extensively
in qualitative and quantitative EDA tasks that fall into 4 main categories of applications (Fig 1,
“Application”):

« Modality-mixing, integration, and reference mapping:

Embeddings are used to visually assess the extent of integration, mixing, or similarities
between cells from different batches [7-2] and to compare methods cf]‘nlegral:iom‘bnlth-cur-
rection [10]. For query dataset(s) mapped onto reference datasets/embeddings, visuals likewise
provide an assessment of merged data similarities or differences [11,12].

« Cluster validation and relationships:

PLOS Computational Biology | hitps //dol.ora/10.1371/loumal pcbi. 1011288  August 17, 2023
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Biologists, stop putting
UMAP plots in your papers

UMAP is a powerful tool for exploratory data analysis, but without a clear
understanding of how it works, it can easily lead to confusion and

misinterpretation.
HARVARD
TH.CHAN

SCHOOL OF PUBLIC HEALTH

Home / Facuity and Researcher Profiles / Rafael A. Irizarry

Primary Facult

Rafael Irizarry

Rafael A. Irizarr

Professor of Biostatistics

Dec. 23,2024
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Department of Biostatistics

library(Matrix)

library(ggplot2)

library(dplyr)

library(umap)

seed(2024-6-21)
load("rda/pop_gen_sample.RData")

set.

The UMAP craze in singe cell RNA-Seq

Single-cell RNA sequencing (scRNA-seq) has become one of the most widely used
technologies in basic biology. With the rise of scRNA-seq, the use of UMAP has become
ubiquitous in publications. While this dimensionality reduction technique is useful for

exploratory data analysis, its overuse and misinterpretation have led to confusion and
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The issue becomes more significant when the underlying mathematics of UMAP is not Fully
understood. UMAP takes a p-dimensional vector of numeric values, such as gene expression
in scRNA-Seq, and applies a mathematical transformation to produce two values, resulting
in the two coordinates shown in the plot. But what exactly is this function? Do the authors
who include these plots in papers fully understand the mathematics behind it? What genes
are included in the calculation and how? How exactly does distance in the two dimensional
summary relate to the actual distance in p-dimensional space? The actual summary function

israrely if ever explained, leaving readers uncertain about what the plot truly represents.

Additionally, UMAP is highly sensitive and can create separations in data that shouldn’t
necessarily exist. For example, consider applying UMAP to 100 randomly generated points

from a multivariate normal distribution representing three correlated random variables:

S5igma < diag(sigma) <- 1
X <- P ,3), Ssigma)
#x <- matrix(rnorm( =1)
u <- umap(as.matrix(dist(x)))
ranks <- rank{row s(x))
colors <- colerRampPalette(c("blue”, "red"))(nrow(x))
colormap <- colors[ranks]
plot{u$layout[,1], uilayout[,k2], type = "n", xlab = "diml", ylab = "dim2")
text(uslayout[,1], uilayout[,2], labels = ranks, col = colormap, cex = ©.5)
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o 9%%§7
74 77879 ssgsws v
696" 7 T8
& D™
My experiment:

UMAP on matrix of

5 pairwise distances

5%9 49 524
40,

36 354 ??9
25
3B0 331 259 99 19 w0414 g

2
3 18164 7 1
o421 26 52 1'%
T T T T T T
3 2 -1 0 1 2 3
UMAP1

Rafael Irizarry

SciLifeLab

Reply | 3=

Sigma <- matrix(.8, 3, 3 iag(Sigma) <- 1

X <o MASS: mvrnorm(1ee. rep(@.3), sSigma)

custom.settings <- umap.defaults

custom.settings$input <- "dist’

u_<_ umap(ac.ma Ldist(x))  config = custom.settings)

ranks <- rank(rowMeans(x))

colors <- colorRampPalette(c("blue”, "red"))(nrow(x))

colormap <- colors[ranks]

plot{u$layout[,1], u$layout[,2], type = "n", xlab = "diml", ylab = "dim2")
text(u$layout[,1], uslayout[,2], labels = ranks, col = colormap, cex = 8.5
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Is UMAP informative for PopGen analysis?

1 SciLifeLab

UMAP PCA
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* Because of their meaningless inter-cluster distances tSNE / UMAP are less useful for population genomics than PCA.
* The goal of tSNE / UMAP is to discover clusters, which is sufficient for Single Cell Biology but not for PopGen.

* In PopGen we generally do not discover clusters, we have an idea about e.g. human populations, and the aim is
often to explore the genetic relatedness between the populations, a task UMAP can absolutely not solve!
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