Das, S., Rai, A., & Rai, S. N. (2022). Differential expression analysis of single-cell RNA-seq data: Current statistical approaches and outstanding challenges.
Entropy.
https://doi.org/10.3390/e24070995
Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., Slichter, C. K., Miller, H. W., McElrath, M. J., Prlic, M., et al. (2015). MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data.
Genome Biology,
16(1), 1–13.
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0844-5
Juntilla, S., Smolander, J., & Elo, L. L. (2022). Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data.
Briefings in Bioinformatics.
https://doi.org/10.1093/bib/bbac286
Soneson, C., & Robinson, M. D. (2018). Bias, robustness and scalability in single-cell differential expression analysis.
Nature Methods,
15(4), 255–261.
https://www.nature.com/articles/nmeth.4612
Tiberi, S., Crowell, H. L., Samartsidis, P., Weber, L. M., & Robinson, M. (2023). Distinct: A novel approach to differential distribution analyses.
The Annals of Applied Statistics,
17(2), 1681–1700.
https://doi.org/10.1214/22-AOAS1689
Wu, Z., Zhang, Y., Stitzel, M. L., & Wu, H. (2018). Two-phase differential expression analysis for single cell RNA-seq.
Bioinformatics,
34(19), 3340–3348.
https://academic.oup.com/bioinformatics/article/34/19/3340/4984507
Zimmerman, K. D., Espeland, M. A., & Langefeld, C. D. (2021). A practical solution to pseudoreplication bias in single-cell studies.
Nature Communications.
https://www.nature.com/articles/s41467-021-21038-1