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Outline SciLifelLab

« Background on epigenomics & ATAC-seq
« Single cell ATAC-seq

« Single cell CUT & TAG

« Single cell DNA-methylation

* Multi-omics

« Spatial methods in epigenomics

* Broad overview
* Focus on concepts over detalls.



Epigenomics SCiLij%Lab

 The epigenome is made up
of chemical compounds and  esm
proteins that can attach to
DNA and direct such actions

as turning genes on or off, ey
controlling the production of ™™
proteins in particular cells s

fiber

120 nm

* In afield of study known as  cwomonema
epigenomics, researchers .
are trying to chart the chromatid
locations and understand
the functions of all the ——
chemical tags that mark the ~_ miote |
genome.

https://www.genome.gov/about-genomics/fact- ,
sheets/Epigenomics-Fact-Sheet (Ou et al, 2017, Science)




Epigenomics, continued Scil ifelab

« The epigenome is involved in many processes, e.g. development,
cancer, aging and more

« Things to measure:
— DNA methylation (e.g. bilsulphite sequencing)
— Chromatin accessibility (e.g. ATAC-seq)

— DNA - protein interactions (e.g. ChiP-seq, CUT&TAG)
e Histones, histone modifications

« Transcription factor binding
* Other proteins

« Such methods were first developed for bulk samples, but have been
adapted for single cell assays.



ATAC-seq Scil ifelab

ATAC-seq
« Assay for Transposase-
Accessible Chromatin using sequencing. =@=D=@=
* Measures chromatin that is accessible, i.e. § s tagmentaton
not bound by any big molecules or folded t;ggsposase

Into compact structures. M

* Basic steps: |
— Transfect cells with Tn5 transposase @@*@
rify DNA

— This inserts sequencing adaptors into i
regions of the chromatin that it can —
access. § sequence

— These adaptors can be used to purify
DNA from open chromatin, and create

Distribution of tag 5’ positions

sequencing libraries.
around binding event (bp)

-200bp
+200bp
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Why ATAC-seq? Scil ifeLab

« Accessible chromatin can tell us about:
— Where promoters are
— How active they are or if they are poised for activation
— Where enhancers are

— If chromatin is open around specific transcription factor binding
sites

— Spread of heterochromatin

« ATAC-seq is simple to use, and works with very little starting material
(even single cells).

—> Often a useful complement to RNA-seq.



ATAC-seq data Scil ifeLab

« Seguencing reads mapped to the genome . 8-
the can be used to find

r&\
()]
1

— Open chromatin (from short DNA L
fragments) /§)"

— Nucleosomes (from longer DNA % 2-
fragments) g

0 ' ; , : .
* Programs, like MACS3, are used to find 0O 200 400 600 800 1000
peaks, I.e. regions with many DNA Fragment length (bp)
fragments mapping.

[] Gene

O Transcription factor

8 Nucleosome

@ Transposase Tn5
Il Peak

s Footprint

NFR fragments
density

NFR fragments

Mononucleosome
fragments

Peaks

(Yan, 2020, Genome Biology)



Single cell ATAC-seq ScilLifeLab

« First paper, from Greenleaf lab:
 Now available as a kit from 10X Genomics

— Each cell is attached to a bead containing a different barcode, inside
an oil droplet.

— These barcodes are attached to the DNA fragments, making it
possible to assign each sequenced DNA fragment to a cell.

Linear Pool
Collect amplification Remove oil

c—

w > 0000 000 €0 0 e > —

* oil
Barcoded
gel beads c—
Transposition of \/ Single nuclei Barcoded accessible
nuclei in bulk GEMs DNA fragments

P5 Barcode Read 1N Read 2N



Single cell ATAC-seq Il ScilLifeLab

An alternative to the droplet based method from

10X genomics is sci-ATAC-seq (single-cell gﬁ ﬁﬁ

combinatorial-indexing with ATAC-seq). v

. . -=:'0.00 9 Yol
Here, cells are split up into e.g. 96 wells, and ':9‘,000 00 "~
each well has a different short barcode. v
Cells are then pooled and re-distributed into o%% 2 80%
wells again, adding another short barcode. 09 ch
This is repeated enough times so that each cell Y

will eventually have it's own (almost) unique
combination of short barcodes.

Low cost per cell, enables high throughput
No commercial solution, harder to set up

Lower cell recovery, important when there is
limited starting material




Single cell ATAC-seq data ScilLifeLab

« Looking at each individual cell, scATAC-seq data are sparse and noisy.
« But combining data from lots of cells gives meaningful signals.
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Single cell ATAC-seq data, continued SciLifeLab

Combining data from lots of genomic loci can also give meaningful signals.

TSS enrichment GATA2 _ZZA__ATAAM
| ™

2 & 3-CMP/BMP |} 2-MEF

o
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insertions

Mean TSS enrichment score
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Signac tutorial (Satpathy et al. 2019 Nature Biotechnology)
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Single cell ATAC-seq data analysis SciLifeLab

Initial single Clustering

cell data Peak calling Filtering cells Normalization and
processing visualization
P
Peak Functional Dilierental
. : DNA
annotation analysis

accessability



1. Initial single cell data processing ScilLifelLab

« De-multiplex: Using the cell specific barcodes, assign each read to a cell.
 (Remove primer sequences.)
« Map reads to the genome, e.g. with

 Remove duplicates: If several read pairs map to exactly the same
coordinates, only one is kept. Such duplicates are assumed to be PCR
artifacts.

 Filter out some bad cells already at this stage.



2. Peak calling SciLifeLab

« Done on aggregated data from all cells. (There is not enough data in a
single cell to call peaks.)

« If we have a rare cell type with e.g. 50 out of 2000 cells, peaks specific
to this cell type can be missed when we use the aggregated data for
peak calling.

— We can go back and redo the peak calling later, only looking at
specific groups of cells.

* We then count the reads from every cell in every peak:

Peak1l O 1 1 0

Mostly Os
Peak2 O
Peak3 O 0 0 1

Peak N 1 0 0 0



3. Filtering cells ScilLifelLab

« There are many things that could go wrong in a single cell ATAC-seq
experiment

— No cell in a droplet

— Several cells in a droplet
— Dead cells

— Few reads from a cell

— No transfection in a cell

« Therefore we use several guality measures to identify and remove
problematic cells/barcodes:

— Number of fragments in peaks: Cells with very few reads may need
to be excluded due to low sequencing depth. Cells with extremely
high levels may represent doublets, nuclei clumps, or other artefacts.

— Fraction of fragments in peaks: Cells with low values (i.e. <15-20%)
often represent low-quality cells or technical artifacts that should be
removed.



3. Filter cells i

SciLifeLab

Fragment sizes: Open chromatin corresponds to
short DNA fragments, so we want to remove cells
with too few short DNA fragments, coming from
open chromatin.

Reads in blacklist regions: The ENCODE

project has provided a list of blacklist regions, i.e.
regions with artefactual signal. Cells with many
reads mapping to these blacklist regions
(compared to reads mapping to peaks) often
represent technical artifacts and should be
removed.

Transcriptional start site (TSS) enrichment score.
TSS are associated with open chromatin, so a low
level of chromatin enrichment would suggest poor
ATAC-seq experiments.
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4. Normalization SciLifelLab

« Account for different sequencing depth in different cells

« Create a simplified representation of the data, using dimension reduction

(singular value decomposition). This is similar to principal component
analysis (PCA).

— The idea behind this is to reduce noise, and to select informative
features to improve clustering of cells and visualization

— Typically, the first component correlates with sequencing depth, so
by removing it we get rid of artefactual signal.

— Reducing dimensionality is often good in itself.

— Results are often better when we select only some features (peaks)
« Those with highest signal

« Those with highest variability



-10

UMAP dimension 1

5. Cluster and visualize cells ScilLifelLab
Similar to single cell RNA seq: ¢ g:“zz;
— Project many dimensions 10 ® Cluster 3
down tO 2 @ Cluster 4

] S\*i‘ @ Cluster5

— UMAP algorithm i Cluster 6
-% Cluster 7

] ] ] o @ Cluster 8
Clustering, to identify groups £ | Cluster 9
of similar cells (representing = ® Cluster 10
. = . Cluster 11
different cell types or cell 2 £ Cluster 12
states). @ Cluster 13
Y @ Cluster 14
: @ Cluster 15
8 @ Cluster 16
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5. Cluster and visualize cells Il ScilLifeLLab

» It’s often not clear which cell types etc. these clusters represent.

— In single cell RNA-seq we can look at marker genes, unique to a
specific cell type. In single cell ATAC-seq, this is harder.

— If it's possible to get RNA-seq data from a similar set of cells, these can
be annotated and then used to annotate the ATAC-seq clusters.

— For this we can use gene activity scores (level of open chromatin
around genes), as a proxy for gene expression.

scATAC-seq cells scRNA-seq cells
10
10+ Double giggative T cell cell
% CD14+ Monocytes =
- MR 1 t
‘ g
P - ?!: Dendritic cell CD16+ Monocytes
_ e Platelets:
51 "Nk cellED4. Memory CD4 Memory
; o .. i
7B cell progenit?é‘i' . Chglaive pDC 0] CD4 NEWE -
N CA B CcD4 'Naive N pDC CD8 Naive CD‘?&ector
o ‘ﬁ ’ o
< ol P& I < Double negative T'cell
= =
2 -]
_10 4
-5 CD14+ Monocytes )
Dendritic cell
CD164 Monocytes p B cell
B cell progeni
-10+i— . : . , -201 . . . ,
-10 -5 0 5 10 -20 -10 0 10

UMAP_1 UMAP_1 19



6. Peak annotation SciLifelLab

* To easier interpret the peaks, it's useful to note their location
with regard to the nearest gene (or the nearest transcription
start site).

« Aregion might not interact with the nearest gene, this is just
a starting guess!

——_ Distal Enhancer Proximal Promoter Distal Enhancer Proximal Promoter
A\ [Gene A [Gene A [Gene B] [Gene B]
) ‘\“\\\:\\\‘:\\\
AN | | | |
““ g \;:;\; —i /‘/‘\ il
e - > \—
@\_"-/M \ ,'__[K_‘-___‘/.A P —
Silenced Gene A Gene B

Chromatin

(Hinman & Cary. 2017, eLlife)
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/. Functional analysis

SciLifelLab

Regions with open chromatin can be further analyzed, to see with
transcription factors might bind there. This can give important
iInformation on which signaling pathways drive gene expression in

different cells.

— Looking for enriched motifs

— Cross-referencing open chromatin regions against public ChlP-seq
data on different TFs.

This can be done for each cell or cluster of cells

LISA —log10(pvalue)

30 1

20 1

10

SPI1
40 |

PBMC CD14 Mono scRNA-seq regulators

expr W]l TFscore® 10 @ 20 @ 0@ 40
00 04 08

CEBPA

CEBPB
SMAD1
IRF1
FLI1 JMJD1C

RUNXT -kMT2A
LMO2

0 25 50 75 100
Rank of enriched TFs



8. Differential DNA accessibility ScilLifeLab

* It's often interesting to know which chromatin regions differ
In accessibility between cell types etc.

* Thisis a similar problem to differential gene expression (for
RNA-seq data)

« Examples of methods:
— Logistic regression
— Negative binomial generalized linear model



Single cell ATAC-seqg analysis tools SciLifeLab

ATAC Cell Ranger

— Computational pipeline from 10X genomics, does (more or less) all of
the analysis steps described here

Seurat/Signac (Archer)

— R packages originally developed for single cell RNA-seq: Filtering
cells, normalization, clustering, visualization, differential DNA
accessibility. Data integration.

episcanpy
— Python package, originally developed for single cell RNA-seq. Similar
functionality to Seurat/Signac
ChromVar

— R package, mostly useful for motif analysis. (Can do clustering,
visualization, differential DNA accessibility too..)

Giggle

— Command line tool for cross-refencing genomic regions against public
data sets.



ChIP-seq Scil ifelab

Crosslinking

« Chromatin Immuno-Precipitation, followed by
seguencing

« Measures interactions between a protein of interest
and DNA

« Uses an antibody towards the protein of interest to
enrich for bound DNA.

« Analysis similar to ATAC-seq: finding peaks (regions
with many reads mapping)

« ChIP on single cells, e.g. using droplets, is hard.

— (Rotem et al. 2015, Nature Biotechnology) had “@ —_—"—

around 800 reads/cell. Still enough to distinguish | B

different cell types. %%»:

— (Grosselin et al. 2019, Nature Genetics) had
around 1600 reads/cell.

Reverse-crosslink
and purify DNA

%\

ChIP DNA fragments
(Narlikar & Jothi, 2011, Next Generation Microarray Bioinformatics) -



Single cell ChlP-seq like methods ScilLifeLab

* ChlIP-free methods:
— (Wang et al. 2019, Molecular Cell) CoBATCH

« Antibody binds to protein of interest. = This recruits PAT complex
with Tn5 - Tagmentation of DNA near protein of interest.

e 12000 reads/cell

« Combinatorial indexing (like for sci-ATAC-seq)
* Quite simple protocol, no ChIP

— (Kaya-Okur et al. 2019, Nature Communications) CUT&Tag, similar
idea. (Used nanowells instead of combinatorial indexing.)
primary antibody

PAT

Tn5 | in situ targeted tagmentation
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Single cell ChIP-seq like methods Il ScilLifeLab

ARTICLES

n.'t.lu.lfe
blOtCChﬂOlogy https://doi.org/10.1038/541587-021-00869-9

M) Check for updates

Single-cell CUT&Tag profiles histone modifications
and transcription factors in complex tissues

Marek Bartosovic ©'®, Mukund Kabbe' and Goncalo Castelo-Branco 12

In contrast to single-cell approaches for measuring gene expression and DNA accessibility, single-cell methods for analyzing
histone modifications are limited by low sensitivity and throughput. Here, we combine the CUT&Tag technology, developed to
measure bulk histone modifications, with droplet-based single-cell library preparation to produce high-quality single-cell data
on chromatin modifications. We apply single-cell CUT&Tag (scCUT&Tag) to tens of thousands of cells of the mouse central
nervous system and probe histone modifications characteristic of active promoters, enhancers and gene bodies (H3K4me3,
H3K27ac and H3K36me3) and inactive regions (H3K27me3). These scCUT&Tag profiles were sufficient to determine cell iden-
tity and deconvolute regulatory principles such as promoter bivalency, spreading of H3K4me3 and promoter-enhancer con-
nectivity. We also used scCUT&Tag to investigate the single-cell chromatin occupancy of transcription factor OLIG2 and the
cohesin complex component RAD21. Our results indicate that analysis of histone modifications and transcription factor occu-
pancy at single-cell resolution provides unique insights into epigenomic landscapes in the central nervous system.
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Single cell ChIP-seq like methods IV SciLifeLab

« Data analysis for these methods is similar to single cell ATAC-seq,.

« Single cell ChIP-seq is still new, but developing fast. Throughput will
likely increase a lot.



DNA methylation Scil ifcLab

« Methyl group bound to cytosine in DNA, typically at CpG sites.
« Usually associated with repression of gene expression

« Bisulphite sequencing: converts cytosine residues to uracil, except
where there is methylation

« Other approaches
— using methylation-sensitive restriction enzymes
— fluorescence-based



Single cell DNA methylation

SciLifelLab

— Bisulphite vs bisulphite-free (methylation-sensitive restriction

scPBAT sc WGBS

sci-MET
sn mC-seq No pge-amplification
scBS-seq
i RSMA
MID-RRES SLBS SCRAM scCGl-seq
Q-RRBJ. WGBS Locus- Al Genome-wide
RRBS
Locus-specific
ScRRBS MSRE-based RGM

Genome-wide

Bisulphite-free
Bisulphite-based

Methods
— Whole genome vs reduced representation/targeted
enzymes)
Quite hard and expensive
Data
— Mostly 5mC
— Thousands of cells
— 10%-107 CpGs per cell
— Not the same CpGs in all cells.
Analysis still hard
Article

DNA methylation atlas of the mousebrain at

single-cell resolution

https://doi.org/101038/s41586-020-03182-8  Hanging Liu"*"®, Jingtian Zhou'**®, Wei Tian', Chongyuan Luo'*, Anna Bartlett',

Andrew Aldridge', Jacinta Lucero®, Julia K. Osteen®, Joseph R. Nery', Huaming Chen',
Angeline Rivkin', Rosa G. Castanon', Ben Clock®, Yang Eric Li", Xiaomeng Hou®*'*",
Olivier B. Poirion®*'*", Sebastian Preiss|**'°", Antonio Pinto-Duarte®, Carolyn O'Connor®?,
Lara Boggeman®, Conor Fitzpatrick™, Michael Nunn', Eran A. Mukamel™, Zhuzhu Zhang',
Edward M. Callaway", Bing Ren’**'°", Jesse R. Dixon®, M. Margarita Behrens® &

Received: 30 April 2020
Accepted: 23 December 2020
Published online: 6 October 2021

Openaccess Joseph R. Ecker*®



Combining assays from the same cells ScilLifeLLab

Many methods combine several assays from the same cells, e.g.
— SCRNA-seq and scATAC-seq (10X genomics, SNARE-seq, and many more)
— ScRNA-seq and sc-protein abundance (CITE-seq)
— SCcRNA-seq and scDNA methylation
— ScRNA-seq and scDNA methylation and sc nucleosome (SCNMT-seq)

— SCRNA-seq, scATAC-seq, sc-protein abundance and clonal info from
mitochondrial DNA (DOGMA-seq)

Method Molecular layers profiled Throughput Special features (compared to Format References
Epigenome Genome Transcriptome (low/:\e':::ium/ techniques from same category)
i
Chromatin Chromatin DNAme CNVs/ploidy/ poly(A)+ RNA ?
accessibility conformation microsatellites/mutation

X X + f usable fragments well Liu et al. (2019)

X N ’ X Zhu et al. (

X w“ ,: x § cost; simple workflow well Reyes et al. (2019a)

X ’. ha ™ X ft acc. & RNA intersect coverage well Cao et al. (2018)

X X fi sensitivity Chen et al. (2019)

X . X idics Xing et a 20)

X X Ma Sai. et al. (2020)

seq X X S Xu et al. (2022)
seq X X well Roojers et al. (2019)

scNOMe-seq X X well Pott, (2017
S X X X vell
K X X well
S X X well
S X X el
S X X X fi throughput el
scNOMeRe-seq X X X f DNAme coverage well
ScSIDR-seq X X captures total RNA well
TARGET-seq X X § cost; fi throughput
RETrace X X - captures microsatellites well Wei and Zhang, (2020)
scTrio-seq2 X 5 X ++ f DNAme coverage well Bian et al. (2018)

30
Dimitriu et al. 2022 Frontiers in Cell and Developmental Biology



Multi-omics analysis SciLifeLab

« Seurat/Signac supports analysis of multiomics data, e.qg.
from 10X

« Best to first analyze each data type separately (QC, filtering,
clustering etc.)

 It's also possible to do a joint neigborhood graph to do
clustering and UMAP on all data together

— WNN: Weighted nearest neighbor

« Another option is to first cluster cells on RNA, then
subcluster on e.g. ATAC-seq.



Spatial methods ScilLifeLab

« Seguencing based methods “spatial transcriptomics”™
+ Captures all genes

- not single cell resolution (each spot consists of several
cells)

« The basic idea is to hybridize a tissue to an array, where
spatial barcodes are added to the RNA molecules

< Staining/Imaging tissue cDNA synthesis
= Tissue
S permeabilization .+
I Tissue section kT
ES o
=<t
= , L
<
',::E L L L Cy3- .Penk DOCZQ _._KCtd12ﬂ;">‘;»»--:./_\
nucleotides [ e & e
o0 %

Stahl et al 2016, Nature

« Imaging based methods “in-situ sequencing’
- probes a subset of genes (typically 100s)
+ single cell resolution




Spatial methods, Il ScilLifeLab

« For sequencing based methods, a lot of the analysis is similar to single cell
data, but instead of cells, you work with “spots” (these typically cover several
cells).

« Spatial methods are often used together with single cell methods, to get
iInformation both on what different cell types looks like (from the single cell
data) and where they are located (from the spatial data)



Spatial methods, I *1J SciLifeLab

Recently, spatial methods have been adapted to ATAC-seq.

Spatial ATAC

¥ Lagan
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Neuroepithelium " Lateral septal nucleus

lateral ventricle

Deng et al 2022, Nature Llorens-Bobadilla et al 2023, Nature Biotech.
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Spatial methods, ScilLifeLab

Spatial methods have also been adapted to CUT & Tag.

F H3K27me3 (50 pm) H3K4me3 (50 pm) H3K27ac (50 um)

mC1
mC2
. WC3
P mcq
mC5
Cc6
c7

H3K27me3 (50 pm)

e H3K4me3 (50 pm)

heart

\ % ’ s Ilver\%
spmal cord TorSEEAD spinal cord
ag b g brain stem \ heart \ . -.
% % V3 \G‘E N 1 P S

p .. s
: 5.0 "
brain stem @ brain stem _, 323 &‘ .}::-.“
u@ ":{,fo "
bs. e o , :%"')
‘ﬁﬁ \ liver
( JS ~ forebrain spinal cord . forebrain="

Deng et al 2022, Science
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Summary ScilLifelLab

Single cell ATAC-seq

— Usually works quite well

— Commercial kits available

— Often used together with single cell RNA-seq
Single cell ChlP-seg/cut & tag etc.

— Data analysis for all of these methods is similar to single cell ATAC-

sed.

— Still new, but developing fast. Throughput will likely increase a lot.
Single cell DNA methylation

— A lot of development happening

— Useful methods will become more widely available (already scWGBS
at NGI/Scilifelab).

Multi-comics
— Many method available, a lot of development.
— Seurat etc. can be used for such data



Some resources SciLifeLab

— Signac website, lots of tutorials
 https://stuartlab.org/signac/
— Epigenomics data analysis course
» https://nbis-workshop-epigenomics.readthedocs.io/en/latest/
* Next occasion probably fall 2024
— 10X genomics
* https://www.10xgenomics.com/products/single-cell-atac

o https://www.10xgenomics.com/products/single-cell-multiome-atac-
plus-gene-expression
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