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Why do we need to normalize 
scRNAseq data?



Biological and  technical variation

• Biological variation:
– Cell type/state

– Cell cycle

– Cell size

– Sex, Age, …
– Etc..

• Technical variation
– Cell quality 

– Library prep efficiency

– Batch effects

– Etc…
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To identify cell types 
we would like to 
remove all other 
sources of variation. 



UMIs does not solve the problem

Vallejos et al. Nature Methods 2017



Normalization

• Want to make expression comparable across 
samples, cells and genes. 

• Involves 3 main steps:
– Scaling 

– Transformation

– Removal of unwanted variation



Genes with different distributions

(Jiang et al. Genome Biol 2022)



Scaling Normalization

• Count normalization –for uneven sequencing depth

• Gene length normalization – for differences in gene 
detection due to gene length (full length methods)

• Drop-out rate normalization – for differences in RNA 
content / drop-out rates

OBS! After scaling we have relative amounts of the 
different genes, not absolute values. 



Depth normalization

• Assuming same RNA content in all cells – may work 
well in homogeneous cell population

• In most cases the amount of RNA – and of 
UMIs/reads differ between cells.

• Also important to check for oulier genes that 
constitute large proportion of the reads!



Bulk RNAseq methods
• CPM: Controls for sequencing depth when dividing by total count

• RPKM/FPKM: Controls for sequencing depth and gene length. Good for 
technical replicates, not good for sample-sample due to compositional 
bias. Assumes total RNA output is same in all samples. 

• TPM: Similar to RPKM/FPKM. Corrects for sequencing depth and gene 
length. Also comparable between samples but no correction for 
compositional bias.

Xi: observed count
li: length of the transcript
N number of fragments sequenced 



Transformation Normalization

• Idea is to have a distribution of expression and 
variance in expression values that best captures 
biological variation.



Logtransformation

• Log-transformed values approaches normal 
distribution for bulk RNAseq data 

• For scRNAseq – more similar to zero-inflated 
binomial

• Still more similar to normal distribution than raw 
counts.



Bulk RNAseq methods

• TMM/RLE/MRN: Improved assumption: The output between samples for 
a core set only of genes is similar. Corrects for compositional bias. RLE and 
MRN are very similar and correlates well with sequencing 
depth. edgeR::calcNormFactors() implements TMM, TMMwzp, RLE & 
UQ. DESeq2::estimateSizeFactors implements median ratio method (RLE). 
Does not correct for gene length.

• VST/RLOG/VOOM: Variance is stabilised across the range of mean values. 
For use in exploratory analyses.  vst() and rlog() functions 
from DESeq2. voom() function from Limma converts data to normal 
distribution.



Depth normalization and logtransformation
in practice:

• The most simple normalization is to divide by 
sequencing depth * a scale factor and log-transform 
the data

• Scater normalize – uses total counts or provided size 
factors. Default is return_log = TRUE.

• Seurat NormalizeData – returns log-normalized data 
with scale.factor = 10K by default.

• Scanpy normalize_per_cell/normalize_total – 
normalize by sequencing depth – then need to run 
log1p.



scRNAseq normalization methods

• Deconvolution/Scran (Pooling-Across-Cells) 

• SCnorm (Expression-Depth Relation) 

• SCTransform

• Census

• Linnorm

• ZINB-WaVE

• BASiCS

• More…



Deconvolution

Lun et al. Genome Biol. 2016



Scran - computeSumFactors

• Deconvolution with all cells
– The assumption is that most genes are not differentially 

expressed (DE) between cells,

• Deconvolution within clusters (FastCluster 
beforehand)
– Size factors computed within each cluster and rescaled by 

normalization between clusters. 

– When many genes are DE between clusters in a 
heterogeneous population.

• computeSumFactors – will also remove low 
abundance genes



Normalization with gene groups

• Global scale factors may lead to overcorrection for 
weakly and moderately expressed genes and 
undercorrection for highly expressed genes.

• It will also differ a lot between cells with high/low 
total counts.

• Solution: Do normalization for genes at different 
expression levels – SCNorm & SCTransform



SCNorm: Expression vs. Depth Bias Correction 

Bacher et al. Nature Methods 2017)

Quantile regression to estimate the count–depth relationship



SCNorm: Expression vs. Depth Bias Correction 

Identical cells in two groups should result in no DE and FC = 1 if normalization was efficient 

(Bacher et al. Nature Methods 2017)



SCTransform (Seurat)

(Hafmeister & Satija Genome Biology 2019)



SCTransform (Seurat)

Pearson residuals from regularized negative binomial (NB) regression

(Hafmeister & Satija Genome Biology 2019)



SCTransform (Seurat)

• OBS! SCTransform function in Seurat also does 
variable gene selection in the same step with a 
slightly different method than the default in Seurat. 

• But you can also specify which genes to run it on.

• You can also run regression of other parameters in 
the same step.

• Should be run per sample not with all data together. 



Zero-Inflated Negative Binomial-based Wanted 
Variation Extraction (ZINB-WaVE) - NewWave.

• Both gene-level and sample-level covariates

• Extension of the RUV model

Risso et al. Nat. Comm. 2018



ZINB-WaVE

Reduces technical influence on PCA, also batch effect. 



Comparison of transformations for single-cell RNA-seq data

(Ahlmann-Eltze Nat. Methods 2023)



Comparison of transformations for single-cell RNA-seq data

(Ahlmann-Eltze Nat. Methods 2023)



Size factors with different normalizations

Vieth et al. Nature Comm. 2019



DE with different normalizations

Vieth et al. Nature Comm. 2019



Imputation

• scRNAseq has a lot of zeros in expression matrix

• Common for GWAS data to impute SNPs

• Many methods published:
– SAVER

– DrImpute

– scImpute

– MAGiC

– Knn-smooth

– Deep count autoencoder



Imputation can introduce false correlations

Andrews et al. F1000research 2018



Imputation has little effect on DE detection

Vieth et al. Nature Comm. 2019



Scaling data – Z-score transformation

• Z-score transformation - linearly transform data to a 
mean of zero and a standard deviation of 1 - also 
called centering and scaling

• PCA or any other type of analysis will be dominated 
by highly expressed genes with high variance. 

• It can be wise to center and scale each gene before 
performing PCA



What normalization should you use?

• Normalization has big impact on differential gene 
expression, but not as much on clustering

• In most cases it is enough to do sequence depth 
normalization and log-transformation.

• When working with highly similar subtypes of the 
same celltype, or with celltypes of very different 
sizes, individual size factors could help.

• Binning by gene level (SCTransform) helps to remove 
the effect of different gene detection across cells.



Confounding factors

• Any source of variation that you do not expect to 
give separation of the cell types.
– Cell cycle

– Cell size

– Sequencing depth

– Cell quality

– Batch

– More…



Linear regression

• Fit a line to the gene 
expression vs variable 
of interest

• Calculate residuals

• Remove variance 
explained by the 
variable of interest by 
taking the residuals.

• Multiple linear 
regression if multiple 
factors.



Other tools to remove unwanted variance

• RUVseq() or svaseq()

• Linear models with e.g. removeBatchEffect() in limma 
or scater

• ComBat() in sva

• Tools like SCTransform, ZIMB-WaVE does regression 
in the same step.



What confounders should you remove?

• Percent mitochondrial reads – often correlates with 
quality of cell

• Sequencing depth 

• Gene detection rate – relates to amount of RNA per 
cell. 

• Cell cycle

• Batch effects (Sample, sort date, sex, etc.) 
– in most cases it is better to use an integration tool.



What confounders should you remove?

ALWAYS check QC parameters in PCA/tSNE/UMAP and 
see how they influence your data.

BUT, be careful that your confounders are not related 
to your biological question!



Scaling and regression in practice

• Seurat ScaleData: does Z-score transformation and 
regression of variables in vars.to.regress. Can use 
linear (default), poisson or negbiom models.

• Scran: runs scaling but not centering automatically in 
PCA step. trendVar function estimates unwanted 
variation either with a design matrix or with block 
factors. decomposeVar or denoisePCA  to remove 
unwanted variation.

• Scanpy: pp.regress_out and pp.scale functions.



Cell cycle effect 

Buettner et al. Nature Biotech. 2019



Predict cell cycle stage / scores

• Seurat – CellCycleScoring – builds on G2M- & 
S-phase human gene lists from Tirosh et al. paper

• Scran – cyclone function – trained on mouse cell 
cycle sorted cells. Uses relative expression of pairs of 
genes.

• Scanpy - tl.score_genes_cell_cycle – uses same gene 
list as Seurat



OBS! Seurat ”Phase” predictions use a fixed cutoff.

FeatureScatter(data, "S.Score","G2M.Score", group.by = 
"Phase")



Cell cycle removal

• Regression on cell cycle scores.
– Either with S.Score and G2M.Score

– Or with Diff = S.Score – G2M.Score

• scLVM - Designed for cell-cycle variation correction. 
Also has correction of other confounding variables. 

• ccRemover (stable version from CRAN). “ccRemover 
outperforms scLVM slightly.” 

• Oscope

• reCAT



Selecting genes

• Excluding invariable genes that do not contribute 
informative/interesting information 
– Improved signal to noise ratio 

– Reduced computational requirements 

• Highly variable genes (HVGs)

• Correlated gene pairs/groups 

• Top PCA loadings 



Variable gene selection

• Genes which behave differently from a null model 
describing technical noise 
– Mean-variance trend: genes with higher than expected 

variance 

– Coefficient of variation (Brennecke et al. 2013) 

• High dropout genes 
– Number of zeros unexpectedly high compared to null 

model 



Highly variable genes (HVGs)

(Brennecke et al. Nature Methods 2013)

Fit a gamma 
generalized linear 
model 

No ERCCs?
-> estimate technical 
noise based on 
all genes 



HVGs with spike-in controls – normalization matters



Varaiable gene selection in practise:

• Seurat: FindVariableFeatures 
• Fits a line to the relationship of log(variance) and log(mean) using local 

polynomial regression (loess). Then standardizes the feature values 
using the observed mean and expected variance. Feature variance is 
then calculated on the standardized values after clipping to a 
maximum.



Varaiable gene selection in practise:

• Scran: ModelGeneVar & getTopHVGs
• Model the variance of the log-expression profiles for each gene, 

decomposing it into technical and biological components based on a 
fitted mean-variance trend.

• Can include blocking parameters in “design”.



Varaiable gene selection in practise:

• Scanpy: sc.pp.highly_variable_genes
• Implements same method as Seurat

• Can specify “batch_key” and calculate per batch then combine the 
values.



Conclusions

• Normalization has impact on differential gene 
expression.

• Many different methods to remove unwanted 
variance – often an important step!

• Selection of variable genes is important to remove 
noise in the data. Always subset genes before 
running PCA/clustering.

• Always aim for same sequencing depth in all samples 
– to avoid at least one confounding factor.



Do not worry! 

If you have distinct celltypes – the clustering will be the 
same regardless of how you treat the data.

But, for subclustering of similar celltypes normalization 
and removal of confounders may be crucial.


