Introduction to

python

with Application to Bioinformatics

- Day 3

Review Day 2

Give an example of a tuple

What is the difference between a tuple and a list?

How would you approach a complicated coding task?

What is the different syntax between a function and a method?

Calculate the average of the list [1,2,3.5,5,6.2] to one decimal

Take the list ['i'"know', python'] as input and output the string 'l KNOW PYTHON'

In [3]:

Out[3]:

Tuples

Give an example of a tuple:

myTuple = (1:2:3:Ia':'b')[4)5:6])
myTuple

(1.’ 2) 3.’ 'a'J Ibl.’ [4.’ 5) 6])

What is the difference between a tuple and a list?
A tuple is immutable while a list is mutable

How to structure code

¢ Decide on what output you want
e What input files do you have?
e How is the input structured, can you iterate over it?
e Where is the information you need located?
e Do you need to save a lot of information while iterating?
m Lists are good for ordered data
m Sets are good for non-duplicate single entry information
= Dictionaries are good for a lot of structured information
e When you have collected the data needed, decide on how to process it
e Areyou writing your results to a file?

Always start with writing pseudocode!

Functions and methods

What is the different syntax between a function and a method?
functionName() <object>.methodName()

Calculate the average of thelist [1,2,3.5,5,6.2] to one decimal

In [4]: wmyList = [1,2,3,5,6]
round(sum(myList)/len(myList),1)

Out[4]: 3.4

Take the list ['i' know',python'] as input and output the string 'l KNOW PYTHON'

In [5]; " '.join(['i'", "know', 'python']).upper()

out[5]: ‘I KNOW PYTHON'

Day 3

e Sets
Dictionaries
Functions
sys.argv

IMDDb

Find the number of genres

126807
71379

Votes | Rating | Year | Runtime | URL | Genres | Title

8.5|1957|5280 | https://images-na.ssl-images. ... |Drama,War|Paths of Glory
8.2|1925|4320 | https://images-na.ssl-images. ... |Adventure,Comedy,Drama,Family|The Gold

Answer

Watch out for the upper/lower cases!

The correct answer is 22

In [1]: fh open('../downloads/250.imdb', 'r', encoding = 'utf-8')
genres = []

for line in fh:
if not line.startswith('#'):

cols = line.strip().split('|")

genre = cols[5].strip()

glist = genre.split(',")

for entry in glist:

if entry.lower() not in genres: # only add genre 1if not already in Llist
genres.append(entry.lower())

fh.close()
print(genres)
print(len(genres))

['drama', ‘'war', 'adventure', 'comedy', 'family', 'animation', ‘'biography', 'his
tory', ‘'action', 'crime', 'mystery', 'thriller', 'fantasy', 'romance', 'sci-fi',
'western', 'musical', 'music', 'historical', 'sport', 'film-noir', 'horror']

22

New data type: set

¢ Aset contains an unordered collection of unique and immutable objects

Syntax:
For empty set:
setName = set()

For populated sets:
setName = {1,2,3,4,5}

Common operations on sets

set.add(a)
len(set)
a in set

In [7]: = set()

.add(100)

.add(25)

.add(3)
x.add('3.0")

#for 1 in x:

print(type(i))
type(x)

##mySet = {2,5,1,3}
#mySet.add(5)
#mySet.add(4)
#print(mySet)

X X X X

Out[7]: set

Find the number of genres

Votes | Rating | Year | Runtime | URL | Genres | Title
126807 8.5|1957|5280 | https://images-na.ssl-images. ... |Drama,War|Paths of Glory
71379 8.2|1925|4320 | https://images-na.ssl-images. ... |Adventure,Comedy,Drama,Family|The Gold

Modify your code to use sets

In [9] + fh open('../downloads/250.imdb', 'r', encoding = 'utf-8')
genres = set()

for line in fh:
if not line.startswith('#'):

cols = line.strip().split('|")

genre = cols[5].strip()

glist = genre.split(',")

for entry in glist:

genres.add(entry.lower()) # set only adds entry 1if not already 1in

fh.close()
print(len(genres))
sorted(list(genres))

22

out[9]: ['action’,
"adventure',
"animation',
"biography’,
'comedy',
‘crime’,
‘drama’,
"family',
‘fantasy',
'film-noir',
'historical’,
"history"',
"horror',
"music’,
"'musical’,
'mystery’,
'romance’,
'sci-fi',
'sport’,
"thriller',
'war',
'western']

IMDDb

How to find the number of movies per genre?

Votes | Rating | Year | Runtime | URL | Genres | Title
126807 8.5|1957|5280 | https://images-na.ssl-images. ... |Drama,War|Paths of Glory
71379 8.2|1925|4320 | https://images-na.ssl-images. ... |Adventure,Comedy,Drama,Family|The Gold

... Hm, starting to be difficult now...

New data type: dictionary

e Adictionary is a mapping of unigue keys to values
e Dictionaries are mutable

Syntax:
a = {} (create empty dictionary)

d = {'keyl':1, 'key2':2, ‘'key3':3}

In [10]: myDict = {'drama': 4,
"thriller': 2,
‘romance’: 5}
myDict

Out[1e]: {'drama': 4, ‘'romance': 5, 'thriller': 2}

In [11]:

Out[11]:

Operations on Dictionaries

len(d)

dlkey]

dlkey] = value
del d[key]

key in d
d.keys ()
d.values ()

d.items ()

Dictonary
Number of items
Returns the item value for key key
Updating the mapping for Aey with value
Delete key from d
Membership tests
Returns an iterator on the keys
Returns an iterator on the values

Returns an iterator on the pair (key, value)

myDict = {'drama’': 4,
"thriller': 2,
‘romance’: 5}

len(myDict)

myDict["drama’]

myDict["horror'] = 2

#myDict

#del myDict['horror']

#myDict

‘drama’ in myDict

myDict.keys()

myDict.items()

myDict.values()

dict_values([4, 2, 5, 2])

EXxercise

In []: myDict = {'drama’': 182,
'war': 30,
‘adventure': 55,
‘comedy': 46,
‘family': 24,
‘animation': 17,
'biography': 25}

e How many entries are there in this dictionary?

¢ How do you find out how many movies are in the genre 'comedy'?

¢ You're not interested in biographies, delete this entry

¢ You are however interested in fantasy, add that we have 29 movies of the genre fantasy
to the list

e What genres are listed in this dictionary?

¢ You remembered another comedy movie, increase the number of comedies by one

In []:

Find the number of movies per genre

Votes | Rating | Year | Runtime | URL | Genres | Title
126807 8.5|1957|5280 | https://images-na.ssl-images. ... |Drama,War|Paths of Glory
71379 8.2|1925|4320 | https://images-na.ssl-images. ... |Adventure,Comedy,Drama,Family|The Gold

Hint! If the genre is not already in the dictionary, you have to add it first

Answer

drama:182 thriller:65
war:30 fantasy:29
adventure:5! romance: 24
comedy:46 sci-fi:28
family:24 western:8
animation:17 musical:5

biography:25 music:3
history:18 historical:1
action:31 sport:7
crime: 62 film-noir:7
mystery:41 horror:5

In []: fh open('../downloads/250.imdb', 'r', encoding = 'utf-8")
genreDict = {} # create empty dictionary

for line in fh:
if not line.startswith('#'):
cols = line.strip().split('|")
genre = cols[5].strip()
glist = genre.split(',")
for entry in glist:
if not entry.lower() in genreDict: # check if genre 1is not in dictionary, add 1
genreDict[entry.lower()] = 1
else:
genreDict[entry.lower()] += 1 # if genre is 1in dictionary, increase count with 1
fh.close()
print(genreDict)

What is the average length of the movies (hours and
minutes) in each genre?

Votes | Rating | Year | Runtime | URL | Genres | Title
126807 8.5|1957|5280 | https://images-na.ssl-images. ... |Drama,War|Paths of Glory
71379 8.2|1925|4320 | https://images-na.ssl-images. ... |Adventure,Comedy,Drama,Family|The Gold

Answer

drama 2hl4min thriller 2hllmin
war 2h30min fantasy 2h2min
adventure 2h13min romance 2h2min
comedy 1h53min sci—-fi 2hémin
family 1h44min western 2hllmin
animation 1h40min musical 1h57min

biography 2h30min music 2h24min
history 2h47min historical 2h38min
action 2h18min sport 2h17min
crime 2hllmin film-noir 1h43min
mystery 2h3min horror 1h59min

Tip!
Here you have to loop twice

In []:

th

open('../downloads/250.imdb", 'r', encoding = 'utf-8")

genreDict = {}

for line in fh:

if not line.startswith('#'):

cols = line.strip().split('|")

genre = cols[5].strip()

glist = genre.split(',")

runtime = cols[3] # Length of movie in seconds

for entry in glist:
if not entry.lower() in genreDict:
genreDict[entry.lower()] = [int(runtime)] # add a list with the runtime
else:
genreDict[entry.lower()].append(int(runtime)) # append runtime to existing List

fh.close()

for genre in genreDict: # Loop over the genres in the dictionaries
average = sum(genreDict[genre])/len(genreDict[genre]) # calculate average Length per genre
hours = int(average/3600) # format seconds to hours
minutes = (average - (3600*hours))/60 # format seconds to minutes

print('The average length for movies in genre '+genre\
+' is '+str(hours)+'h'+str(round(minutes))+"'min")

NEW TOPIC: Functions

fh
genreDict

open("../files/250.imdb’, 'r', encoding = 'utf-g')
{

for line in fh:
if not line.startswith('#'):

cols = line.strip().split('|")
genre ols[5].strip()
glist enre.split(’,")

runtime = cols[3] # Length of movie in seconds
for entry in glist:
if not entry.lower() in genreDict:
genreDict[entry.lower()] = [int(runtime)] # add a list with the runtime
1se:

genreict[entry.lower()].append(int(runtime)) # append runtime to existing List

fh.close()
G i Dict: L b
average = sum(genreDict[genre])/len(genreDict[genre]) # calculate average Length per genre
hours = average/3600 # format seconds to hours
minutes = (average - (3600*int(hours)))/60 # format seconds to minutes

print('The average length for movies in genre ‘+genre+' is '+str(int(hours))+'h’+str(round(minutes))+'min")

A lot of ugly formatting for calculating hours and minutes from seconds...

In [12]: def FormatSec(genre): # input a List of seconds

average = sum(genreDict[genre])/len(genreDict[genre])
hours = int(average/3600)
minutes = (average - (3600*hours))/60

return str(hours)+'h'+str(round(minutes))+"'min’

fh
genreDict

open('../downloads/250.imdb", 'r', encoding = 'utf-8")
{}

for line in fh:
if not line.startswith('#'):

cols = line.strip().split('|")

genre = cols[5].strip()

glist = genre.split(',")

runtime = cols[3] # Length of movie 1in seconds

for entry in glist:
if not entry.lower() in genreDict:
genreDict[entry.lower()] = [int(runtime)] # add a list with the runtime
else:
genreDict[entry.lower()].append(int(runtime)) # append runtime to existing List
fh.close()

for genre in genreDict:
print('The average length for movies in genre '+genre\
+' is '+FormatSec(genre))

The average length for movies in genre drama is 2hl4min

The average length for movies in genre war is 2h30min

The average length for movies in genre adventure is 2h13min
The average length for movies in genre comedy is 1h53min
The average length for movies in genre family is 1h44min
The average length for movies in genre animation is 1h4@min
The average length for movies in genre biography is 2h3@min
The average length for movies in genre history is 2h47min
The average length for movies in genre action is 2h18min
The average length for movies in genre crime is 2hllmin

The average length for movies in genre mystery is 2h3min
The average length for movies in genre thriller is 2hllmin
The average length for movies in genre fantasy is 2h2min
The average length for movies in genre romance is 2h2min
The average length for movies in genre sci-fi is 2hémin

The average length for movies in genre western is 2hllmin
The average length for movies in genre musical is 1h57min
The average length for movies in genre music is 2h24min

The
The
The
The

average
average
average
average

length for
length for
length for
length for

movies
movies
movies
movies

in
in
in
in

genre
genre
genre
genre

historical is 2h38min
sport is 2h17min
film-noir is 1h43min
horror is 1h59min

Function structure

def functionName(argl, arg2, arg3):
finalValue = ©
Here 1s some code where you can do
calculations etc, on argl, arg2, arg3

and update finalValue

return FinalValue

Function structure

def functionName{argl, arg2, arg3

(Jfinalvalue = 0

Here 1s some code where you can do
calculations etc, on argl, arg2, arg3
and update finalValue

(Jreturn_FinalValue

In [13]: def addFive(number):
final = number + 5
return final

addFive(4)
Out[13]: 9

In [14]; from datetime import datetime
def whatTimeIsIt():
time = 'The time is: ' + str(datetime.now().time())

return time

whatTimeIsIt()

Out[14]: 'The time is: 19:16:35.696575'

In [15]: def addFive(number):
final = number + 5
return final

addFive(4)
#final

final = addFive(4)
final

out[15]: 9

In [16]:

Scope

e Variables within functions
e Global variables

def someFunction():
s = 'a string’
print(s)

s = 'another string'
someFunction()
print(s)

another string
another string

Why use functions?

e Cleaner code

o Better defined tasks in code
e Re-usability

e Better structure

Importing functions

e Collect all your functions in another file
e Keeps main code cleaner
e Easy to use across different code

Example:

1. Create a file called myFunctions.py, located in the same folder as your script
2. Put a function called formatSec() in the file

3. Start writing your code in a separate file and import the function

In [17]: from myFunctions import formatSec
seconds = 32154

formatSec(seconds)

Out[17]: '8h56min’

In [18]: from myFunctions import formatSec, toSec

seconds = 21154
print(formatSec(seconds))

days =0
hours =21
minutes = 56
seconds = 45

print(toSec(days, hours, minutes, seconds))

5h53min
79005s

myFunctions.py

(seconds):
hours = seconds/
minutes = (seconds - (: (hours)))/
((hours))+ - ((minutes))+

(days, hours, minutes, seconds):

days* ¥ ¥
hours* - *
minutes*
seconds

total

Summary

¢ A functionis a block of organized, reusable code that is used to perform a single, related
action

¢ Variables within a function are local variables
¢ Functions can be organized in separate files and imported to the main code

— Notebook Day_3_Exercise_1 (~30 minutes)

NEW TOPIC AGAIN: sys.argv

Avoid hardcoding the filename in the code
Easier to re-use code for different input files
Uses command-line arguments
Input is list of strings:

m Position O: the program name

= Position 1: the first argument

The “sys.argv’ function

Python script called print_argv.py:

Sys

(sys.argv)

Running the script with command line arguments as input:

nina@Nina-pc: $ python3 print_argv.py input_file.txt output_file.txt

['print_argv.py', 'input_file.txt', 'output_file.txt']

Instead of:

line fh:
out.write(line)

h.close()
ut.close()

, encoding =

]

, encoding

do:

sys

(sys.argv) ==
fh (sys.argv['], , encoding
out (sys.argv[], , encoding

line fh:
out.write(line)

fh.close()
out.close()

Run with:

python3 copy_file.py 250.imdb imdb_copy.txt

IMDb

Re-structure and write the output to a new file as below

3
3
3
6
.9
1
4
2

6
1
.5
3
4

>
8.
8.
8.
8.
8

8.
8.
8.
>

8.
8.
8

8.
8.
>

8.
8.
8.
>

8.

Western

For a Few Dollars More (1965) [2h12min]

Unforgiven (1992) [2hllmin]

The Treasure of the Sierra Madre (1948) [2hémin]
Once Upon a Time in the West (1968) [2h25min]

The Goed, the Bad and the Ugly (1966) [2h41min]
Butch Cassidy and the Sundance Kid (1969) [1h5emin]
Django Unchained (2012) [2h45min]

The General (1926) [1h15min]

Musical

M

usic

La La Land (2016) [2h8min]

The Wizard of 0z (1939) [1h42min]
The Lion King (1994) [1h28min]
Singin' in the Rain (1952) [1h43min]
Sholay (1975) [2h42min]

Like Stars on Earth (2007) [2h45min]
Whiplash (2@14) [1h47min]
Amadeus (1984) [2h4@min]

istorical

There Will Be Blood (2007) [2h38min]

e Use atext editor, not notebooks for this
e Use functions as much as possible
e Use sys.argv for input/output

Answer - Example

(seconds):
hours = seconds/
minutes = (seconds - (x (hours)))/
((hours))+ ((minutes))+

(movie):
formMovie = (movie[])+ +movie[]+ (movie[1)+ +movie[]+
formMovie

(sys.argv) ==
fh = (sys.argv[1, , encoding =
genreDict = {}

line fh:
line.startswith():
cols = line.strip().split()
rating (cols[].strip())
year (cols[].strip())
length (cols[].strip())
movie cols[~].strip()
genre cols[].strip()
glist genre.split()
entry glist:
entry.lower() genreDict:
genreDict[entry.lower()] = []
genreDict[entry.lower()].append([rating, movie, year, FormatSec(length)])
fh.close()

out = (sys.argv[1, , encoding =
genre genreDict:
out.write(+genre.capitalize()+
movie genreDict[genre]
out.write(FormatMovie(movie))
out.close()

