
Introduction toIntroduction to

with Application to Bioinformaticswith Application to Bioinformatics
- Day 3- Day 3

Review Day 2Review Day 2
Give an example of a tuple
What is the difference between a tuple and a list?
How would you approach a complicated coding task?
What is the different syntax between a function and a method?
Calculate the average of the list [1,2,3.5,5,6.2] to one decimal
Take the list ['i','know','python'] as input and output the string 'I KNOW PYTHON'

TuplesTuples
Give an example of a tuple:

In [3]: myTuple = (1,2,3,'a','b',[4,5,6])
myTuple

What is the difference between a tuple and a list?
A tuple is immutable while a list is mutable

Out[3]: (1, 2, 3, 'a', 'b', [4, 5, 6])

How to structure codeHow to structure code
Decide on what output you want
What input �les do you have?
How is the input structured, can you iterate over it?
Where is the information you need located?
Do you need to save a lot of information while iterating?

Lists are good for ordered data
Sets are good for non-duplicate single entry information
Dictionaries are good for a lot of structured information

When you have collected the data needed, decide on how to process it
Are you writing your results to a �le?

Always start with writing pseudocode!

Functions and methodsFunctions and methods
What is the different syntax between a function and a method?
functionName() <object>.methodName()

Calculate the average of the list [1,2,3.5,5,6.2] to one decimal

In [4]: myList = [1,2,3,5,6]
round(sum(myList)/len(myList),1)

Out[4]: 3.4

Take the list ['i','know','python'] as input and output the string 'I KNOW PYTHON'

In [5]: ' '.join(['i','know','python']).upper()

Out[5]: 'I KNOW PYTHON'

Day 3Day 3
Sets
Dictionaries
Functions
sys.argv

IMDbIMDb
Find the number of genresFind the number of genres

AnswerAnswer
Watch out for the upper/lower cases!

The correct answer is 22

In [1]: fh = open('../downloads/250.imdb', 'r', encoding = 'utf-8')
genres = []

for line in fh:
 if not line.startswith('#'):
 cols = line.strip().split('|')
 genre = cols[5].strip()
 glist = genre.split(',')
 for entry in glist:
 if entry.lower() not in genres: # only add genre if not already in list
 genres.append(entry.lower())
fh.close()
print(genres)
print(len(genres))

['drama', 'war', 'adventure', 'comedy', 'family', 'animation', 'biography', 'his
tory', 'action', 'crime', 'mystery', 'thriller', 'fantasy', 'romance', 'sci-fi',
'western', 'musical', 'music', 'historical', 'sport', 'film-noir', 'horror']
22

New data type: New data type: set
A set contains an unordered collection of unique and immutable objects

Syntax:
For empty set:
setName = set()

For populated sets:
setName = {1,2,3,4,5}

Common operations on Common operations on sets
set.add(a)

len(set)

a in set

In [7]: x = set()
x.add(100)
x.add(25)
x.add(3)
x.add('3.0')
#for i in x:
print(type(i))
type(x)
##mySet = {2,5,1,3}
#mySet.add(5)
#mySet.add(4)
#print(mySet)

Out[7]: set

Find the number of genresFind the number of genres

Modify your code to use sets

In [9]: fh = open('../downloads/250.imdb', 'r', encoding = 'utf-8')
genres = set()

for line in fh:
 if not line.startswith('#'):
 cols = line.strip().split('|')
 genre = cols[5].strip()
 glist = genre.split(',')
 for entry in glist:
 genres.add(entry.lower()) # set only adds entry if not already in
fh.close()
print(len(genres))
sorted(list(genres))

Out[9]:

22

['action',
 'adventure',
 'animation',
 'biography',
 'comedy',
 'crime',
 'drama',
 'family',
 'fantasy',
 'film-noir',
 'historical',
 'history',
 'horror',
 'music',
 'musical',
 'mystery',
 'romance',
 'sci-fi',
 'sport',
 'thriller',
 'war',
 'western']

IMDbIMDb
How to find the number of movies per genre?How to find the number of movies per genre?

... Hm, starting to be dif�cult now...

New data type: New data type: dictionary
A dictionary is a mapping of unique keys to values
Dictionaries are mutable

Syntax:
a = {} (create empty dictionary)

d = {'key1':1, 'key2':2, 'key3':3}

In [10]: myDict = {'drama': 4,
 'thriller': 2,
 'romance': 5}
myDict

Out[10]: {'drama': 4, 'romance': 5, 'thriller': 2}

Operations on DictionariesOperations on Dictionaries

In [11]: myDict = {'drama': 4,
 'thriller': 2,
 'romance': 5}
len(myDict)
myDict['drama']
myDict['horror'] = 2
#myDict
#del myDict['horror']
#myDict
'drama' in myDict
myDict.keys()
myDict.items()
myDict.values()

Out[11]: dict_values([4, 2, 5, 2])

ExerciseExercise

In []: myDict = {'drama': 182,
 'war': 30,
 'adventure': 55,
 'comedy': 46,
 'family': 24,
 'animation': 17,
 'biography': 25}

How many entries are there in this dictionary?
How do you �nd out how many movies are in the genre 'comedy'?
You're not interested in biographies, delete this entry
You are however interested in fantasy, add that we have 29 movies of the genre fantasy
to the list
What genres are listed in this dictionary?
You remembered another comedy movie, increase the number of comedies by one

In []:

Find the number of movies per genreFind the number of movies per genre

Hint! If the genre is not already in the dictionary, you have to add it �rst

AnswerAnswer

In []: fh = open('../downloads/250.imdb', 'r', encoding = 'utf-8')
genreDict = {} # create empty dictionary

for line in fh:
 if not line.startswith('#'):
 cols = line.strip().split('|')
 genre = cols[5].strip()
 glist = genre.split(',')
 for entry in glist:
 if not entry.lower() in genreDict: # check if genre is not in dictionary, add 1
 genreDict[entry.lower()] = 1
 else:
 genreDict[entry.lower()] += 1 # if genre is in dictionary, increase count with 1
fh.close()
print(genreDict)

What is the average length of the movies (hours andWhat is the average length of the movies (hours and
minutes) in each genre?minutes) in each genre?

AnswerAnswer

Tip!
Here you have to loop twice

In []: fh = open('../downloads/250.imdb', 'r', encoding = 'utf-8')
genreDict = {}

for line in fh:
 if not line.startswith('#'):
 cols = line.strip().split('|')
 genre = cols[5].strip()
 glist = genre.split(',')
 runtime = cols[3] # length of movie in seconds
 for entry in glist:
 if not entry.lower() in genreDict:
 genreDict[entry.lower()] = [int(runtime)] # add a list with the runtime
 else:
 genreDict[entry.lower()].append(int(runtime)) # append runtime to existing list
fh.close()

for genre in genreDict: # loop over the genres in the dictionaries
 average = sum(genreDict[genre])/len(genreDict[genre]) # calculate average length per genre
 hours = int(average/3600) # format seconds to hours
 minutes = (average - (3600*hours))/60 # format seconds to minutes
 print('The average length for movies in genre '+genre\
 +' is '+str(hours)+'h'+str(round(minutes))+'min')

NEW TOPIC: FunctionsNEW TOPIC: Functions

A lot of ugly formatting for calculating hours and minutes from seconds...

In [12]: def FormatSec(genre): # input a list of seconds
 average = sum(genreDict[genre])/len(genreDict[genre])
 hours = int(average/3600)
 minutes = (average - (3600*hours))/60
 return str(hours)+'h'+str(round(minutes))+'min'

fh = open('../downloads/250.imdb', 'r', encoding = 'utf-8')
genreDict = {}

for line in fh:
 if not line.startswith('#'):
 cols = line.strip().split('|')
 genre = cols[5].strip()
 glist = genre.split(',')
 runtime = cols[3] # length of movie in seconds
 for entry in glist:
 if not entry.lower() in genreDict:
 genreDict[entry.lower()] = [int(runtime)] # add a list with the runtime
 else:
 genreDict[entry.lower()].append(int(runtime)) # append runtime to existing list
fh.close()

for genre in genreDict:
 print('The average length for movies in genre '+genre\
 +' is '+FormatSec(genre))

The average length for movies in genre drama is 2h14min
The average length for movies in genre war is 2h30min
The average length for movies in genre adventure is 2h13min
The average length for movies in genre comedy is 1h53min
The average length for movies in genre family is 1h44min
The average length for movies in genre animation is 1h40min
The average length for movies in genre biography is 2h30min
The average length for movies in genre history is 2h47min
The average length for movies in genre action is 2h18min
The average length for movies in genre crime is 2h11min
The average length for movies in genre mystery is 2h3min
The average length for movies in genre thriller is 2h11min
The average length for movies in genre fantasy is 2h2min
The average length for movies in genre romance is 2h2min
The average length for movies in genre sci-fi is 2h6min
The average length for movies in genre western is 2h11min
The average length for movies in genre musical is 1h57min
The average length for movies in genre music is 2h24min

g g g
The average length for movies in genre historical is 2h38min
The average length for movies in genre sport is 2h17min
The average length for movies in genre film-noir is 1h43min
The average length for movies in genre horror is 1h59min

Function structureFunction structure

Function structureFunction structure

In [13]: def addFive(number):
 final = number + 5
 return final

addFive(4)

In [14]: from datetime import datetime

def whatTimeIsIt():
 time = 'The time is: ' + str(datetime.now().time())
 return time

whatTimeIsIt()

In [15]: def addFive(number):
 final = number + 5
 return final

addFive(4)
#final

final = addFive(4)
final

Out[13]: 9

Out[14]: 'The time is: 19:16:35.696575'

Out[15]: 9

ScopeScope
Variables within functions
Global variables

In [16]: def someFunction():
s = 'a string'
 print(s)

s = 'another string'
someFunction()
print(s)

another string
another string

Why use functions?Why use functions?
Cleaner code
Better de�ned tasks in code
Re-usability
Better structure

Importing functionsImporting functions
Collect all your functions in another �le
Keeps main code cleaner
Easy to use across different code

Example:

1. Create a �le called myFunctions.py, located in the same folder as your script
2. Put a function called formatSec() in the �le

3. Start writing your code in a separate �le and import the function

In [17]: from myFunctions import formatSec

seconds = 32154

formatSec(seconds)

Out[17]: '8h56min'

In [18]: from myFunctions import formatSec, toSec

seconds = 21154
print(formatSec(seconds))

days = 0
hours = 21
minutes = 56
seconds = 45

print(toSec(days, hours, minutes, seconds))

5h53min
79005s

myFunctions.pymyFunctions.py

SummarySummary
A function is a block of organized, reusable code that is used to perform a single, related
action
Variables within a function are local variables
Functions can be organized in separate �les and imported to the main code

→ Notebook Day_3_Exercise_1 (~30 minutes)

NEW TOPIC AGAIN: NEW TOPIC AGAIN: sys.argv
Avoid hardcoding the �lename in the code
Easier to re-use code for different input �les
Uses command-line arguments
Input is list of strings:

Position 0: the program name
Position 1: the �rst argument

The `sys.argv` function

Python script called print_argv.py :

Running the script with command line arguments as input:

Instead of:

do:

Run with:

IMDbIMDb
Re-structure and write the output to a new �le as below

Note:

Use a text editor, not notebooks for this
Use functions as much as possible
Use sys.argv for input/output

Answer - Answer - ExampleExample

