Introduction to

python

with Application to Bioinformatics

- Day 1

Who we are

Nina Dimitris Dan Jeanette Ingrid

John Rui Kristina Claudio

Who you are

Programming experience

| use, modify, and run scripts practically every day

| can run scripts written by cthers ‘

Position

| know another programming language {eg Perl, Java, R, etc)

| have never written any code before

Staff scientist

Seniog researcher/Principal investigator
ogenlor I'ESEB{'CF]IEI'IEII'IE'ET 9

Senior Research Engineer

RESEARCHER

PhD candidate

Postdoctoral researcher

Practical issues

e Course website: https:/nbisweden.github.io/workshop-python/ht20/
(https:/nbisweden.github.io/workshop-python/ht20/),

e One mainroom for lectures

e Same room is used for questions during exercises

e Try to keep your cameras on, but microphone muted

e Breakout rooms are used for discussions in smaller groups, a TA will be assigned to each
group

e HackMD used for interaction and questions

¢ Short lectures with many breaks

https://nbisweden.github.io/workshop-python/ht20/

Practical issues

e During exercises, TRY TO DISCONNECT FROM ZOOM. You can always connect when

you have a question
e Take lots of small breaks also when working with the exercises

e We will try to stick to the schedule, but it's only preliminary until it's happened

If you have any questions during the lecture, feel free to unmute and ask. If you don't want to
ask in the Zoom meeting, write the question in the HackMD

To start with

¢ Write a short presentation of yourself in the HackMD

Schedule

Schedule

Discussions.

proect
Discussion

Time.

Check

e Has everyone managed to install Python?
¢ Have you managed to run the test script?
e Have you installed notebooks? (optional)

What is programming?
Wikipedia:

"Computer programming is the process of building and designing an executable computer
program for accomplishing a specific computing task"

What can we use it for?

Endless possibilities!

e reverse complement DNA
e custom filtering of VCF files
¢ plotting of results

¢ all excel stuff!

Why Python?

Typical workflow

1. Get data

2. Clean, transform data in spreadsheet

3. Copy-paste, copy-paste, copy-paste

4. Run analysis & export results

5. Realise the columns were not sorted correctly
6. Go back to step 2, Repeat

Python versions

Old versions

Python 3

Python 1.0 - January 1994

Python 3.0 - December 3, 2008

Python 1.0 - January 1994

Python 3.1 - June 27,2009

Python 1.2 - April 10, 1995

Python 3.2 - February 20,2011

Python 1.3 - October 12, 1995

Python 3.3 - September 29,2012

Python 1.4 - October 25, 1996

Python 3.4 - March 16,2014

Python 1.5 - December 31, 1997

Python 3.5 - September 13,2015

Python 1.6 - September 5, 2000

Python 3.6 - December 23,2016

Python 2.0 - October 16, 2000

Python 3.7 - June 27,2018

Python 2.1 - April 17,2001

Python 3.8 - October 14,2019

Python 2.2 - December 21, 2001

Python 3.9 - October 5, 2020

Python 2.3 - July 29, 2003

Python 2.4 - November 30, 2004

Python 2.5 - September 19, 2006

Python 2.6 - October 1, 2008

Python 2.7 - July 3,2010

» Course Content

During this course, you will learn about:

o Core concepts about Python syntax: Data types, blocks and indentation, variable scoping, iteration, functions, methods and
arguments

Different ways to control program flow using loops and conditional tests

Regular expressions and pattern matching

Writing functions and best-practice ways of making them usable

Reading from and writing to files

Code packaging and Python libraries

How to work with biological data using external libraries (if time allows).

o o o ¢ o o

» Learning Outcomes

After this course you should be able to:

Edit and run Python code

Write file-processing python programs that produce output to the terminal and/or external files.
Create stand-alone python programs to process biological data

Know how to develop your skills in Python after the course (including debugging)

o o o o

Learning objectives (ie goals for the teachers)

o Increase the student’s toolbelt for better quality and performance at work
o Make students understand that there is more to programming than only knowing the syntax of a language. This expertise is
precisely what NBIS provides.

Some good advice

5 days to learn Python is not much

Amount of information will decrease over days
Complexity of tasks will increase over days
Read the error messages!

Save all your code

How to seek help:

e Google
e Ask your neighbour
e Ask an assistant

Day 1

Types and variables
Operations

Loops

if/else statements

Example of a simple Python script

In [1]: # A simple Loop that adds 2 to a number

i=290

while i < 10:
u=1i+2
print('u is',u)
i+=1

is
is
is
is
is
is
is
is
is
is

C CcCCcCCccCccCccCccCc ccC
R R OO NOUVTLPA, WN

= o

Example of a simple Python script

[# A simple loop that adds 2 to a numbed
1 =0
while i < 10:
u=1i+ 2

print('u is "+str(u))
i4+=1

u is 2
u is 3
u is 4
u is 5
u is 6
u is 7
u is 8
u is 9
u is 10
u is 11

Comment

All lines starting with # is interpreted by python as a comment and are not executed.
Comments are important for documenting code and considered good practise when doing all
types of programming

Example of a simple Python script

A simple Loop that adds 2 to a number
i o)
while i < 10:

u=1+2

print('u is "+str(u))

i+=1

u is 2
uis 3
uis 4
uis 5
u is 6
uis 7
u is 8
uis 9
u is 10
uis 11

Literals

All literals have a type:

e Strings (str) ‘Hello’ “Hi”

¢ Integers (int) 5

¢ Floats (float) 3.14

e Boolean (bool) True or False

In [6]:
out[6]:
In [7]:

out[7]:

Literals define values

'this is a string’
"this is also a string”

3 # here we can put a comment so we know that this is an integer

3.14 # this is a float
True # this is a boolean

type('this is a string')

str

Collections

[3, 5, 7, 4, 99] # this
('a', 'b', 'c', 'd') # this
{'a', 'b', 'c'} # this
{'a':3, 'b':5, 'c':7} # this

type([3, 5, 7, 4, 99])

list

is
is
is
is

List of 1integers

tuple of strings
set of strings
dictionary with strings as keys and integers as values

What operations can we do with different values?

That depends on their type:

In [9]: ‘a string'+' another string’
#2 + 3.4
#'a string ' * 3.2

out[9]: 'a string another string’
Type Operations
int +-/%/ ...
float +-/*%/ ..

string +

Example of a simple Python script

A simple loop that adds 2 to a number
G- o
while i < 10:
u=1i+2
print(‘'u is "+str(u))
i+=1

u is 2
u is 3
u is 4
uis 5
u is 6
uis 7
u is 8
uis 9
u is 10
u is 11

Identifiers

Identifiers are used to identify a program element in the code.

For example:

Variables
Functions

Modules
Classes

Variables

Used to store values and to assign them a name.

Examples:
[] i = @
e counter =5
e snpname = 'rs2315487'
e snplist = ['rs21354', 'rs214569"']

In [12]: width = 23564
height = 10

snpname = 'rs56483 '
snplist = ['rs12345', 'rs458782"]

width * height

Out[12]: 235640

How to correctly name a variable

t
|

- a letter

- underscore - all letters

- digit - all digits

- underscores

Allowed: Not allowed:
Var_name 2save
_total *important
aReallyLongName Special%
with_digit_2 With spaces

dkfsjdsklut (well, allowed, but NOT recommended)

NO special characters:
+-%$%;:,2H{}()<>""|\/@

Reserved keywords

False class finally is

None continue for lambda
True def from nonlocal
and del global not

as elif if or
assert else import pass
break except in raise

return
try
while
with

yield

These words can not be used as variable names

Summary

e Comment your code!

e Literals define values and can have different types (strings, integers, floats, boolean)

e Values can be collected in lists, tuples, sets, and dictionaries

e The operation that can be performed on a certain value depends on the type

e Variables are identified by a name and are used to store a value or collections of values

e Name your variables using descriptive words without special characters and reserved
keywords

— Notebook Day_1_Exercise_1 (~30 minutes)

NOTE!
How to get help?

¢ Google (https:/www.google.com/) and Stack overflow (https://stackoverflow.com/) are
your best friends!

¢ Official python documentation (https://docs.python.org/3/)

e Ask your neighbour

e Askus

https://www.google.com/
https://stackoverflow.com/
https://docs.python.org/3/

Python standard library

Built-in Functions
abs() delattr () hash () memoryview () set()
all () dict () help () setattr ()
any () dir() hex() next () slice()
ascii() divmod() id() object () sorted()
bin () enumerate () input () oct() staticmethod ()
eval () open() @
breakpoint() exec() isinstance () ord()} w
bytearray () filter () issubclass() pow () super()
bytes () iter () tuple ()
callable () format() property ()
chr() frozenset () list() range () vars()
classmethod () getattr() locals() repr() zip()
compile () globals() map () reversed () __import__()
complex() hasattr() max () round ()

Example print() and str()

A simple Lloop that adds 2 to a number
i=20
while i < 10:

=1+ 2

u
e QRO s
i 1

i+=

is
is
is
is
is
is
is
is
is
is

cC cCccCcccccccC
= = O 0NV AWN

- ©

Note!
Here we format everything to a string before printing it

Python standard library

Built-in Functions

abs () delattr() hash () memoryview () set()
all () dict () help () setattr ()
any () dir() hex () next () slice()
ascii() divmod() id() object () sorted()

bin () enumerate () input() oct() staticmethod ()
w0 won) a0
breakpoint() exec() isinstance() ord() @

bytearray() filter () issubclass () pow () super()
bytes () iter () tuple ()
callable () format () property ()

chr() frozenset () list() range() vars()
classmethod () getattr(} locals () repr() zip()
compile () globals() map () reversed () _import__ ()

complex() hasattr () @ round ()

In [39]: width =5

height = 3.6

snps = ['rsl123', 'rs5487']
snp = 'rs2546'

active = True

nums = [2,4,6,8,4,5,2]
float(width)

Out[39]: 5.0

More on operations

Operation Result

X + Y sum of x and vy

X -y difference between x and vy
X %%y x to the power y

pow (X, y) x to the power y

float (x) x converted to float

int(x) x converted to int!

len(z) length of z if list

max(z) maximum in list of z
min(z) minimum in list of z

In [40]: x-=4
y =3
z=1[2, 3, 6, 3, 9, 23]
pow(x, y)

Out[40]: 64

In [41]:

Out[41]:

Comparison operators

Operation Meaning
< less than
= less than or equa

greater than

VvV V. A

greater than or equal

equal

not equal

Can be used on int, float, str, and bool. Outputs a boolean.

Logical operators

Operation Meaning
connects two statements, both
and conditions having to be fulfilled
connects two statements, either
or conditions having to be fulfilled

not reverses and/or

Membership operators

Operation Meaning

in value in object

not in value not in object

In [42]:

Out[42]:

X = 2

y=3

X == 2 and y ==

x = [2,4,7,3,5,9]
y=1['a,'b','c']

False

In [13]:

A simple Loop that adds 2 to a number and checks 1if the number is even
i =0

even = [2,4,6,8,10]

while i < 10:

:Pini(Tuzis "+str(u)+'. Is this number even? '+str(u in even))
i+=1
u is 2. Is this number even? True
u is 3. Is this number even? False
u is 4. Is this number even? True
u is 5. Is this number even? False
u is 6. Is this number even? True
u is 7. Is this number even? False
u is 8. Is this number even? True
u is 9. Is this number even? False
u is 10. Is this number even? True
u is 11. Is this number even? False

In [1£L]: # A simple Loop that adds 2 to a number, check if number is even and below 5
i =0
even = [2,4,6,8,10]
while i < 10:
u=1+2
print('u is '+str(u)+'. Is this number even and below 5? '+\
str(u in even and u < 5))

i+=1
u is 2. Is this number even and below 5? True
u is 3. Is this number even and below 5? False
u is 4. Is this number even and below 5? True
u is 5. Is this number even and below 5? False
u is 6. Is this number even and below 5? False
u is 7. Is this number even and below 5? False
u is 8. Is this number even and below 5? False
u is 9. Is this number even and below 5? False
u is 10. Is this number even and below 5? False
u is 11. Is this number even and below 5? False

Order of precedence

There is an order of precedence for all operators:

Operators

* *

*, /. %

Descriptions

exponent

multiplication, division, modulo
addition, substraction
comparison operators
comparison operators

boolean NOT

boolean AND

boolean OR

Word of caution when using operators

In [43]: x=5
y =7
z =2

(x >6andy ==7) or z > 1
X >6 and (y == 7 or z > 1)

and binds stronger than or
X >4o0ory==6and z >3

X >4 or (y ==6 and z > 3)
(x >4 o0ory==6)and z > 3

out[43]: False

In [44]; # BEWARE!
X 5

y 8

#XX == 6 or xxx == 6 or x > 2
X > 42 or (y < 8 and someRandomVariable > 1000)

Out[44]: False

Python does short-circuit evaluation of operators

More on sequences (For example strings and lists)

Lists (and strings) are an ORDERED collection of elements where every element can be
accessed through an index.

Operators Descriptions
X in s True if an item in s is equal to x
s + t Concatenates s and ¢
S ¥ n Adds s to itself n times
s[i] /th item of s, origin O
slizj] slice of s from / fo j-7
sli:j:k] slice of s from / to j-7 with step &
In [47]: = [213.!4:5)3)7)5:9]
= 'some longrandomstring’

‘o' in s

1[1]

s[0:7]

s[0:8:2]

s[-2]

1[0] = 42

s[o] 'S’

Mutable vs Immutable objects

Mutable objects can be altered after creation, while immutable objects can't.

Immutable objects: Mutable objects:
e int elist
e float e set
e bool edict
e str

e tuple

Operations on mutable sequences

Operation Result
s[i] = x item / of s is replaced by x

slice of s from 7/ to j-17 is replaced by the
slisf] =t contents of the iterable t
del s[i:] removes element / to /-7
slizj:k] =t specified element replaced by ¢
s.append (x) appends x to the end of the sequence
s[izj:k] slice of s from 7 fo j-7 with step &
s[:] or creates a copy of s
s.copy () creates a copy of s
s.insert (i, x) inserts x /nto s at the index /
s.pop ([i]) retrieves the item /7 from s and also removes it
s.remove(x) retrieves the first item from s where s[i] ==
s.reverse() reverses the items of s in place

In [48]: = [0,1,2,3,4,5,6,7,8,9]
.insert(5,10)

.reverse()

n n n n

Out[48]: [91 8, 7, 6, 5, 10, 4, 3, 2, 1, 0]

Summary

e The python standard library has many built-in functions regularly used

e Operators are used to carry out computations on different values

e Three types of operators; comparison, logical, and membership

e Order of precedence crucial!

e Mutable object can be changed after creation while immutable objects cannot be
changed

— Notebook Day_1_Exercise_2 (~30 minutes)

Loops in Python

In [2(5]: fruits = ['apple', 'pear', 'banana’, 'orange’]

print(fruits[e])
print(fruits[1])
print(fruits[2])
print(fruits[3])

apple
pear
banana
orange

In [27]; fruits = ['apple', 'pear', 'banana’, 'orange']

for fruit in fruits:
print(fruit)

print('end")

print('end")

apple
pear
banana
orange
end

Always remember to INDENT your loops!

In [49]:

Different types of loops

For loop

fruits = ['apple’, 'pear’, 'banana’, ‘orange']

for fruit in fruits:
print(fruit)
print('end")

apple
pear
banana
orange
end

While loop

In [5]_]: fruits = ['apple', 'pear', 'banana’, 'orange’]

i=20

while i < len(fruits):
print(fruits[i])
i=1+1

apple
pear
banana
orange

Different types of loops

For loop

Is a control flow statement that performs a fixed operation over a known amount of steps.
While loop

Is a control flow statement that allows code to be executed repeatedly based on a given
Boolean condition.

Which one to use?

For loops better for simple iterations over lists and other iterable objects

While loops are more flexible and can iterate an unspecified number of times

Example of a simple Python script

A simple loop that adds 2 to a number
i=20

while i < 10:
u=1H+?2
print('u is "#str(u))
i+=1

u is 2

uis 3

u is 4

u is 5

u is 6

uis 7

u is 8

u is 9

u is 10

u is 11

— Notebook Day_1_Exercise_3 (~20 minutes)

Conditional if/else statements

Anything the evaluates to a Boolean

if |condition;]
print('Condition evaluated to True')
else:

print('Condition evaluated to False')

ndentation

In [52]: shopping_ list = ['bread’, 'egg', 'butter’, 'milk']

if len(shopping_list) > 5:
print('Go shopping!")
else:
print('Nah! I\'ll do it tomorrow!")

Nah! I'11 do it tomorrow!

['bread', 'egg', 'butter', 'milk']

In [53]: shopping_list
False

tired

if len(shopping_list) > 5:
if not tired:
print('Go shopping!")
else:
print('Too tired, I\'ll do it later')
else:
if not tired:
print('Better get it over with today anyway')
else:
print('Nah! I\'1ll do it tomorrow!")

Better get it over with today anyway

This is an example of a nested conditional

Putting everything into a Python script

Any longer pieces of code that have been used and will be re-used SHOULD be saved

Two options:

e Saveit as a text file and make it executable
e Save it as a notebook file

Examples

Things to remember when working with scripts

e Put #!/usr/bin/env python3 in the beginning of the file
e Make the file executable torunwith . /script.py

e Otherwise runscript with python script.py

Working on files

In [5[1]: fruits = ['apple', 'pear', 'banana’, 'orange’]

for fruit in fruits:
print(fruit)

apple
pear
banana
orange

fruits.txt (END)

In [5[5]; fh = open('../files/fruits.txt', 'r', encoding = 'utf-8")

for line in fh:
print(line)

fh.close()

apple

pear

banana

orange

Aditional useful methods:

"string'.strip() Removes whitespace
"string'.split() Splits on whitespace into list
In [56] : s = an example string to split with whitespace in end

sw = s.strip()

Sw

#L = sw.split()

#L

#l = s.strip().split('\t")
#L

Out[56]: 'an example string to split with whitespace in end’

In [36]: fh = open('../files/fruits.txt', 'r', encoding = 'utf-8')

for line in fh:
print(line.strip())

fh.close()

apple
pear
banana
orange

Another example

ICA 254
Icecream
25.45
654.21

2365

500
SevenEleven
ICA 278.50
Ahlens 645.20
bank_statement.txt (END)

How much money is spent on ICA?

In [57]: fh

total

open("../files/bank_statement.txt", "r", encoding = "utf-8")

(4]

for line in fth:
expenses = line.strip().split() # split Line into Llist

store = expenses[9] # save what store
price = float(expenses[1]) # save the price
if store == 'ICA": # only count the price if store is ICA
total = total + price
fh.close()

print('Total amount spent on ICA is: '+str(total))

Total amount spent on ICA is: 1186.71

Slightly more complex...

year
2018

2018
2018

2018
2018
bank statement extended.txt (END)

month
08
2018
09
09
2018
09
09
2018
29
10

sum

254

a5

25.45

654.21

PE] 39.90
2365

500

29 62.60
278.50

645.20

How much money is spent on ICA in September?

In []: fh open("../files/bank_statement_extended.txt", "r", encoding = "utf-8")

total

(4]

for line in fh:
if not line.startswith('store'):
expenses = line.strip().split()

store = expenses[0]
year = expenses[1]
month = expenses[2]
day = expenses[3]
price = float(expenses[4])
if store == 'ICA' and month == '@9': # store has to be ICA and month september
total = total + price
fh.close()
out = open("../files/bank_statement_results.txt", "w", encoding = "utf-8") # open a file for writing the results to

out.write('Total amount spent on ICA in september is: '+str(total))
out.close()

Summary

¢ Python has two types of loops, For loops and While loops

e |Loops can be used on any iterable types and objects
e If/Elsestatement are used when deciding actions depending on a condition that

evaluates to a boolean
e Several If/Else statements can be nested
e Save code as notebook or text file to be run using python
e The function open() can be used to read in text files
o Atextfileisiterable, meaningitis possible to loop over the lines

— Notebook Day_1_Exercise_4

