
Introduction toIntroduction to

with Application to Bioinformaticswith Application to Bioinformatics
- Day 1- Day 1

Who we areWho we are
Nina Dimitris Dan Jeanette Ingrid

John Rui Kristina Claudio

Who you areWho you are

Practical issuesPractical issues
Course website:

One main room for lectures
Same room is used for questions during exercises
Try to keep your cameras on, but microphone muted
Breakout rooms are used for discussions in smaller groups, a TA will be assigned to each
group
HackMD used for interaction and questions
Short lectures with many breaks

https://nbisweden.github.io/workshop-python/ht20/
(https://nbisweden.github.io/workshop-python/ht20/)

https://nbisweden.github.io/workshop-python/ht20/

Practical issuesPractical issues
During exercises, TRY TO DISCONNECT FROM ZOOM. You can always connect when
you have a question
Take lots of small breaks also when working with the exercises
We will try to stick to the schedule, but it's only preliminary until it's happened

If you have any questions during the lecture, feel free to unmute and ask. If you don't want to
ask in the Zoom meeting, write the question in the HackMD

To start withTo start with
Write a short presentation of yourself in the HackMD

ScheduleSchedule

CheckCheck
Has everyone managed to install Python?
Have you managed to run the test script?
Have you installed notebooks? (optional)

What is programming?What is programming?
Wikipedia:

"Computer programming is the process of building and designing an executable computer
program for accomplishing a speci�c computing task"

What can we use it for?What can we use it for?
Endless possibilities!

reverse complement DNA
custom �ltering of VCF �les
plotting of results
all excel stuff!

Why Python?Why Python?
Typical workflowTypical workflow

1. Get data
2. Clean, transform data in spreadsheet
3. Copy-paste, copy-paste, copy-paste
4. Run analysis & export results
5. Realise the columns were not sorted correctly
6. Go back to step 2, Repeat

Python versionsPython versions
Old versions Python 3

Python 1.0 - January 1994 Python 3.0 - December 3, 2008

Python 1.0 - January 1994 Python 3.1 - June 27, 2009

Python 1.2 - April 10, 1995 Python 3.2 - February 20, 2011

Python 1.3 - October 12, 1995 Python 3.3 - September 29, 2012

Python 1.4 - October 25, 1996 Python 3.4 - March 16, 2014

Python 1.5 - December 31, 1997 Python 3.5 - September 13, 2015

Python 1.6 - September 5, 2000 Python 3.6 - December 23, 2016

Python 2.0 - October 16, 2000 Python 3.7 - June 27, 2018

Python 2.1 - April 17, 2001 Python 3.8 - October 14, 2019

Python 2.2 - December 21, 2001 Python 3.9 - October 5, 2020

Python 2.3 - July 29, 2003

Python 2.4 - November 30, 2004

Python 2.5 - September 19, 2006

Python 2.6 - October 1, 2008

Python 2.7 - July 3, 2010

Some good adviceSome good advice
5 days to learn Python is not much
Amount of information will decrease over days
Complexity of tasks will increase over days
Read the error messages!
Save all your code

How to seek help:

Google
Ask your neighbour
Ask an assistant

Day 1Day 1
Types and variables
Operations
Loops
if/else statements

Example of a simple Python scriptExample of a simple Python script

In [1]: # A simple loop that adds 2 to a number
i = 0
while i < 10:
 u = i + 2
 print('u is',u)
 i += 1

u is 2
u is 3
u is 4
u is 5
u is 6
u is 7
u is 8
u is 9
u is 10
u is 11

Example of a simple Python scriptExample of a simple Python script

CommentComment
All lines starting with # is interpreted by python as a comment and are not executed.
Comments are important for documenting code and considered good practise when doing all
types of programming

Example of a simple Python scriptExample of a simple Python script

LiteralsLiterals
All literals have a type:

Strings (str) ‘Hello’ “Hi”
Integers (int) 5
Floats (�oat) 3.14
Boolean (bool) True or False

Literals define valuesLiterals define values

In [6]: 'this is a string'
"this is also a string"
3 # here we can put a comment so we know that this is an integer
3.14 # this is a float
True # this is a boolean

type('this is a string')

CollectionsCollections

In [7]: [3, 5, 7, 4, 99] # this is a list of integers

('a', 'b', 'c', 'd') # this is a tuple of strings
{'a', 'b', 'c'} # this is a set of strings
{'a':3, 'b':5, 'c':7} # this is a dictionary with strings as keys and integers as values

type([3, 5, 7, 4, 99])

Out[6]: str

Out[7]: list

What operations can we do with different values?What operations can we do with different values?
That depends on their type:

In [9]: 'a string'+' another string'
#2 + 3.4
#'a string ' * 3.2

Type Operations

int + - / ** % // ...
�oat + - / * % // ...
string +

Out[9]: 'a string another string'

Example of a simple Python scriptExample of a simple Python script

IdentifiersIdentifiers
Identi�ers are used to identify a program element in the code.

For example:

Variables
Functions
Modules
Classes

VariablesVariables
Used to store values and to assign them a name.

Examples:

i = 0
counter = 5
snpname = 'rs2315487'
snplist = ['rs21354', 'rs214569']

In [12]: width = 23564
height = 10

snpname = 'rs56483 '
snplist = ['rs12345','rs458782']

width * height

Out[12]: 235640

How to correctly name a variableHow to correctly name a variable

Allowed: Not allowed:
Var_name 2save
_total *important
aReallyLongName Special%
with_digit_2 With spaces
dkfsjdsklut (well, allowed, but NOT recommended)

NO special characters:
+ - * $ % ; : , ? ! { } () < > “ ‘ | \ / @

Reserved keywordsReserved keywords

These words can not be used as variable names

SummarySummary
Comment your code!
Literals de�ne values and can have different types (strings, integers, �oats, boolean)
Values can be collected in lists, tuples, sets, and dictionaries
The operation that can be performed on a certain value depends on the type
Variables are identi�ed by a name and are used to store a value or collections of values
Name your variables using descriptive words without special characters and reserved
keywords

→ Notebook Day_1_Exercise_1 (~30 minutes)

NOTE!NOTE!
How to get help?How to get help?

 and are
your best friends!
Of�cial
Ask your neighbour
Ask us

Google (https://www.google.com/) Stack over�ow (https://stackover�ow.com/)

python documentation (https://docs.python.org/3/)

https://www.google.com/
https://stackoverflow.com/
https://docs.python.org/3/

Python standard libraryPython standard library

Example Example print() and and str()

Note!
Here we format everything to a string before printing it

Python standard libraryPython standard library

In [39]: width = 5
height = 3.6
snps = ['rs123', 'rs5487']
snp = 'rs2546'
active = True
nums = [2,4,6,8,4,5,2]

float(width)

Out[39]: 5.0

More on operationsMore on operations

In [40]: x = 4
y = 3
z = [2, 3, 6, 3, 9, 23]
pow(x, y)

Out[40]: 64

Comparison operatorsComparison operators

Can be used on int, �oat, str, and bool. Outputs a boolean.

In [41]: x = 5
y = 3

#x = 5.14
#y = 3.14

y != x

Out[41]: True

Logical operatorsLogical operators

Membership operatorsMembership operators

In [42]: x = 2
y = 3

x == 2 and y == 5

x = [2,4,7,3,5,9]
y = ['a','b','c']

2 in x
4 in x and 'd' in y

Out[42]: False

In [13]: # A simple loop that adds 2 to a number and checks if the number is even
i = 0
even = [2,4,6,8,10]
while i < 10:
 u = i + 2
 print('u is '+str(u)+'. Is this number even? '+str(u in even))
 i += 1

u is 2. Is this number even? True
u is 3. Is this number even? False
u is 4. Is this number even? True
u is 5. Is this number even? False
u is 6. Is this number even? True
u is 7. Is this number even? False
u is 8. Is this number even? True
u is 9. Is this number even? False
u is 10. Is this number even? True
u is 11. Is this number even? False

In [14]: # A simple loop that adds 2 to a number, check if number is even and below 5
i = 0
even = [2,4,6,8,10]
while i < 10:
 u = i + 2
 print('u is '+str(u)+'. Is this number even and below 5? '+\
 str(u in even and u < 5))
 i += 1

u is 2. Is this number even and below 5? True
u is 3. Is this number even and below 5? False
u is 4. Is this number even and below 5? True
u is 5. Is this number even and below 5? False
u is 6. Is this number even and below 5? False
u is 7. Is this number even and below 5? False
u is 8. Is this number even and below 5? False
u is 9. Is this number even and below 5? False
u is 10. Is this number even and below 5? False
u is 11. Is this number even and below 5? False

Order of precedenceOrder of precedence
There is an order of precedence for all operators:

Word of caution when using operatorsWord of caution when using operators

In [43]: x = 5
y = 7
z = 2
(x > 6 and y == 7) or z > 1

x > 6 and (y == 7 or z > 1)

and binds stronger than or
x > 4 or y == 6 and z > 3
x > 4 or (y == 6 and z > 3)
(x > 4 or y == 6) and z > 3

In [44]: # BEWARE!
x = 5
y = 8

#xx == 6 or xxx == 6 or x > 2
x > 42 or (y < 8 and someRandomVariable > 1000)

Python does short-circuit evaluation of operators

Out[43]: False

Out[44]: False

More on sequences More on sequences (For example strings and lists)

Lists (and strings) are an ORDERED collection of elements where every element can be
accessed through an index.

In [47]: l = [2,3,4,5,3,7,5,9]
s = 'some longrandomstring'

'o' in s

l[1]
s[0:7]
s[0:8:2]
s[-2]
l[0] = 42
s[0] = 'S'

Mutable vs Immutable objectsMutable vs Immutable objects

Mutable objects can be altered after creation, while immutable objects can't.

Immutable objects: Mutable objects:

int • list
float • set
bool • dict
str
tuple

Operations on mutable sequencesOperations on mutable sequences

In [48]: s = [0,1,2,3,4,5,6,7,8,9]
s.insert(5,10)
s.reverse()
s

Out[48]: [9, 8, 7, 6, 5, 10, 4, 3, 2, 1, 0]

SummarySummary
The python standard library has many built-in functions regularly used
Operators are used to carry out computations on different values
Three types of operators; comparison, logical, and membership
Order of precedence crucial!
Mutable object can be changed after creation while immutable objects cannot be
changed

→ Notebook Day_1_Exercise_2 (~30 minutes)

Loops in PythonLoops in Python
In [26]: fruits = ['apple','pear','banana','orange']

print(fruits[0])
print(fruits[1])
print(fruits[2])
print(fruits[3])

In [27]: fruits = ['apple','pear','banana','orange']

for fruit in fruits:
 print(fruit)
print('end')
print('end')

Always remember to INDENT your loops!

apple
pear
banana
orange

apple
pear
banana
orange
end

Different types of loopsDifferent types of loops

For loop loop

In [49]: fruits = ['apple','pear','banana','orange']

for fruit in fruits:
 print(fruit)
print('end')

While loop loop

apple
pear
banana
orange
end

In [51]: fruits = ['apple','pear','banana','orange']

i = 0
while i < len(fruits):
 print(fruits[i])
 i = i + 1

apple
pear
banana
orange

Different types of loopsDifferent types of loops
For loop

Is a control �ow statement that performs a �xed operation over a known amount of steps.

While loop

Is a control �ow statement that allows code to be executed repeatedly based on a given
Boolean condition.

Which one to use?

For loops better for simple iterations over lists and other iterable objects

While loops are more �exible and can iterate an unspeci�ed number of times

Example of a simple Python scriptExample of a simple Python script

→ Notebook Day_1_Exercise_3 (~20 minutes)

Conditional Conditional if/else statements statements

In [52]: shopping_list = ['bread', 'egg', 'butter', 'milk']

if len(shopping_list) > 5:
 print('Go shopping!')
else:
 print('Nah! I\'ll do it tomorrow!')

In [53]: shopping_list = ['bread', 'egg', 'butter', 'milk']
tired = False

if len(shopping_list) > 5:
 if not tired:
 print('Go shopping!')
 else:
 print('Too tired, I\'ll do it later')
else:
 if not tired:
 print('Better get it over with today anyway')
 else:
 print('Nah! I\'ll do it tomorrow!')

This is an example of a nested conditionalThis is an example of a nested conditional

Nah! I'll do it tomorrow!

Better get it over with today anyway

Putting everything into a Python scriptPutting everything into a Python script
Any longer pieces of code that have been used and will be re-used SHOULD be saved

Two options:

Save it as a text �le and make it executable
Save it as a notebook �le

Examples

Things to remember when working with scriptsThings to remember when working with scripts
Put #!/usr/bin/env python3 in the beginning of the �le
Make the �le executable to run with ./script.py
Otherwise run script with python script.py

Working on filesWorking on files
In [54]: fruits = ['apple','pear','banana','orange']

for fruit in fruits:
 print(fruit)

apple
pear
banana
orange

In [55]: fh = open('../files/fruits.txt', 'r', encoding = 'utf-8')

for line in fh:
 print(line)

fh.close()

apple

pear

banana

orange

Aditional useful methods:Aditional useful methods:

'string'.strip() Removes whitespace

'string'.split() Splits on whitespace into list

In [56]: s = ' an example string to split with whitespace in end '
sw = s.strip()
sw
#l = sw.split()
#l
#l = s.strip().split('\t')
#l

Out[56]: 'an example string to split with whitespace in end'

In [36]: fh = open('../files/fruits.txt', 'r', encoding = 'utf-8')

for line in fh:
 print(line.strip())

fh.close()

apple
pear
banana
orange

Another exampleAnother example

How much money is spent on ICA?

In [57]: fh = open("../files/bank_statement.txt", "r", encoding = "utf-8")

total = 0

for line in fh:
 expenses = line.strip().split() # split line into list
 store = expenses[0] # save what store
 price = float(expenses[1]) # save the price
 if store == 'ICA': # only count the price if store is ICA
 total = total + price
fh.close()

print('Total amount spent on ICA is: '+str(total))

Total amount spent on ICA is: 1186.71

Slightly more complex...Slightly more complex...

How much money is spent on ICA in September?

In []: fh = open("../files/bank_statement_extended.txt", "r", encoding = "utf-8")

total = 0

for line in fh:
 if not line.startswith('store'):
 expenses = line.strip().split()
 store = expenses[0]
 year = expenses[1]
 month = expenses[2]
 day = expenses[3]
 price = float(expenses[4])
 if store == 'ICA' and month == '09': # store has to be ICA and month september
 total = total + price
fh.close()

out = open("../files/bank_statement_results.txt", "w", encoding = "utf-8") # open a file for writing the results to
out.write('Total amount spent on ICA in september is: '+str(total))
out.close()

SummarySummary
Python has two types of loops, For loops and While loops

Loops can be used on any iterable types and objects
If/Else statement are used when deciding actions depending on a condition that

evaluates to a boolean
Several If/Else statements can be nested

Save code as notebook or text �le to be run using python
The function open() can be used to read in text �les

A text �le is iterable, meaning it is possible to loop over the lines

→ Notebook Day_1_Exercise_4

