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Variables

Functions

Arguments

Control Flow

I/O

RegExp

...



Why Python?
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Repetitive task: automate! 
* Write code 
* transform it to executable ( compile ) 
* run 
* check/test 
* start again... 
Too slow... => Python is for you
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Repetitive task: automate! 
* Write code 
* transform it to executable ( compile ) 
* run 
* check/test 
* start again... 
Too slow... => Python is for you

Shell? Sure! 
But mostly for moving files around 
and updating text data 
=> not for every task. 

Want to 
* get some data 
* store them temporarily  

to manipulate in some sort of map 

...shells are limited.



Why Python?
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Repetitive task: automate! 
* Write code 
* transform it to executable ( compile ) 
* run 
* check/test 
* start again... 
Too slow... => Python is for you

Shell? Sure! 
But mostly for moving files around 
and updating text data 
=> not for every task. 

Want to 
* get some data 
* store them temporarily  

to manipulate in some sort of map 

...shells are limited.

Python has built-in constructs. 

Python offers more structure, 
but allowing splitting programs into modules 

Python is multi-purpose.



Release dates (Wikipedia)
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dead Incompatibilities

https://pythonclock.org/
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Monday Tuesday Wednesday Thursday Friday

09:00-12:00 Lectures

12:00-13:00 Lunch

13:00-17:00 Exercises + Project Assi
stan

ts



Eh... 5 days only?
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1. Explain something 
2. Example 
3. Practice 

Repeat 

☜ in pairs

Ideally, the assistants sleep

Adapted pedagogy
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Monday Tuesday Wednesday Thursday Friday

09:00-12:00 Hands-on Python stuff

12:00-13:00 Lunch

13:00-15:00 Hands-on more Python stuff

15:00-17:00 Own Practice on Main Assignment
Assi

stan
ts

Assi
stan

ts

Assi
stan

ts

Topic Example (me) Practice (You!)



Who you are...
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Who you are...
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Work in pairs 

Raise your hand for help 

Ask politely
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Syntax Programming||
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Lexer

Parser

Analys

Stream of 
characters

Stream of 
tokens

Abstract 
Syntax 
Tree



illegal word
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Lexer

Parser

Analys

One Letter 
at a time

Words

Proper 
syntax? Run
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Run
Python
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Run
Python

Example: 1st jupyter notebook



So far...

builtin types 
int 

float 
str 
list

Operations 
+, -, * , /, **, %, // ... 
+, -, *, /, ... 
word[3], word[2:5] 
list[2:-3], list[2:3]=['a','b']



So far...
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builtin types 
int 

float 
str 
list

Operations 
+, -, * , /, **, %, // ... 
+, -, *, /, ... 
word[3], word[2:5] 
list[2:-3], list[2:3]=['a','b']

# Explicit line joining 
"something " \ 
'over '         \ 
"several "     \ 
'lines.'

# Implicit line joining 
list = ["something ", 

'over ', 
"several ", 
'lines.']



Comments
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# Blank lines are ignored 
# and the beginning of a line matters 



Literals
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'Hello' "hi" 
3 

3.14 
"3" 

'3.14' 
'file.txt'

Values like

they have a type



Identifiers
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for example: variables 
functions 
modules 
classes



Identifiers
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for example: variables 
functions 
modules 
classes



Identifiers
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_ _ _ _ _ _ _ _ _

✓ all letters (uppercase, lowercase) 
✓ all digits 
✓ the underscore

...

for example: variables 

✓ a letter 
✓ underscore 

digit✗



Identifiers
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+ - * $ % ; : , ? ! { } ( ) < > " ' | \ @ No

etc...

for example: variables 

_ _ _ _ _ _ _ _ _

✓ all letters (uppercase, lowercase) 
✓ all digits 
✓ the underscore

...

✓ a letter 
✓ underscore 

digit✗



Keywords
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Keywords
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Identifiers of the form: 
_*        # special meaning for modules 
__*__   # System-defined names 
__*      # special meaning for classes



Online definitions
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strings ➲

integers ➲

floats ➲

delimiters ➲

operators ➲

https://docs.python.org/3.5/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#integer-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#floating-point-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#delimiters
https://docs.python.org/3.5/reference/lexical_analysis.html#operators


Standard Library

38Example with str

https://docs.python.org/3.5/library/functions.html
https://docs.python.org/3.5/library/stdtypes.html#str.capitalize


range()
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➥ Notebook 2

https://docs.python.org/3.5/library/stdtypes.html#ranges


fruits = ['Apple', 'Orange']

for fruit in fruits:
    print(fruit)

for x in range(10): #0-9
    # Do something on x
    print('Item:', x)

Iteration - for loop

40

Indentation with Tab character

Iterable



x = 0
while x < 100:
    print(x)
    x += 1

while loop
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?



a = <choose> 
b = <choose> 
print(a <op> b) 42

Operations on * numbers 
* strings 
* lists 
...
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Comparators
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int, float, str

logical 
identity

Physical 
identity



On sequences
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eg strings or lists



On sequences
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eg strings or lists

mutable



Special characters in Strings
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Our first Python

49

Open a text editor: 
* First line:                #!/usr/bin/python 
* Second line (optional): # -*- coding: <some encoding> -*-

Use a variable to store the following string items: 
* Get the kids from school 
* Buy groceries 
* Fill up the car tank 
* call mum 
* Pay the electricity bill 
* Read a Swedish book with å,ä,ö 
* escape the special characters like \n and \t 
* Call mum again
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Open a text editor: 
* First line:                #!/usr/bin/python 
* Second line (optional): # -*- coding: <some encoding> -*-

Use a variable to store the following string items: 
* Get the kids from school 
* Buy groceries 
* Fill up the car tank 
* call mum 
* Pay the electricity bill 
* Read a Swedish book with å,ä,ö 
* escape the special characters like \n and \t 
* Call mum again

Print a long line of 68 '=' symbols 
For each item, print 'Remember to', a space, and then the item 
Print again the same long line as above



Our first Python file
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68
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Operations on * numbers 
* strings 
* lists 
...

* numbers 
* strings 
* lists 
* IO files 
...

open('filename', 'r', encoding='utf-8')
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open('filename', 'r', encoding='utf-8')

file path 
./some/folder/to/file/name 
some/folder/to/file/name 
/absolute/path/to/file/name 
../parent/search/to/file/name 
../../../bla/bla/file/name

mode 
'r' for read 
'w' for write 
'a' for append

Eh...guess...

Opening ...ok... 
How about closing ?



Automatic closing
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with open('filename', 'r', encoding='utf-8') as the_file:
    for line in the_file:     # the_file is iterable, yeii ! 
        print(line.rstrip())  # Removing the trailing \n
                              # since print() adds one.

Revisit notebook 2
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Control Flow

Conditional: if / else

for and while loops
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Conditional: if / else

if condition:
    print('This will be executed')
else:
    print('Otherwise, it is this one')

Indentation

boolean of type bool
True      False

Anything that evaluates to

Evaluates to False: 
False, None, 0, 0.0, [] 
... some more (later)

Otherwise True!

else is optional
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Conditional: if / else

s = input('Want candies?\n')
if s == 'yes':
    print('Later!')
else:
    print('Go clean your room, anyway!')
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Conditional: if / else

s = input('Want candies?\n')
if s == 'yes':
    print('Later!')
else:
    print('Go clean your room, anyway!')

s = input('Want candies?\n')
if s in ['y','yes','Y','Yes','YES']:
    print('Later!')
else:
    print('Go clean your room, anyway!')
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Conditional: if / else

shopping =['milk','eggs','bread','butter']
if len(shopping) > 2:
    print("I'll do it tomorrow")
else:
    print('ok, maybe today!')
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Conditional: if / else

shopping =['milk','eggs','bread','butter']
if shopping:
    print("Get on it")
else:
    print('Finito')

shopping =['milk','eggs','bread','butter']
if len(shopping) > 2:
    print("I'll do it tomorrow")
else:
    print('ok, maybe today!')
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Conditional: if / else

if foo:
    if bar:
        print(baz)
    else:
        print(q)
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Conditional: if / else

if foo:
    if bar:
        print(baz)
    else:
        print(q)

if foo:
    if bar:
        print(baz)
else:
    print(q)



Nesting and Indentation
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Read book_chapter.txt into Python, line by line, 
Print the first 50 characters of each line, appending an 
ellipsis ... at the end, if necessary.



Nesting and Indentation
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with open('book_chapter.txt', 'r', encoding='utf-8') as file:
    for line in file:               # file is iterable, yeii!
        line = line.strip()         # remove white-spaces and \n
        if line:                    # if the line is not empty
            if len(line) > 50:
                print( line[0:50], '...' )  
            else:
                print( line[0:50] ) # slicing gracefully,
                                    # but no ellipsis

Read book_chapter.txt into Python, line by line, 
Print the first 50 characters of each line, appending an 
ellipsis ... at the end, if necessary.






