
— with Application to Bioinformatics

Introduction to

2

3

Variables

Functions

Arguments

Control Flow

I/O

RegExp

...

Why Python?

4

Repetitive task: automate!
* Write code
* transform it to executable (compile)
* run
* check/test
* start again...
Too slow... => Python is for you

Why Python?

5

Repetitive task: automate!
* Write code
* transform it to executable (compile)
* run
* check/test
* start again...
Too slow... => Python is for you

Shell? Sure!
But mostly for moving files around
and updating text data
=> not for every task.

Want to
* get some data
* store them temporarily  

to manipulate in some sort of map

...shells are limited.

Why Python?

6

Repetitive task: automate!
* Write code
* transform it to executable (compile)
* run
* check/test
* start again...
Too slow... => Python is for you

Shell? Sure!
But mostly for moving files around
and updating text data
=> not for every task.

Want to
* get some data
* store them temporarily  

to manipulate in some sort of map

...shells are limited.

Python has built-in constructs.

Python offers more structure,
but allowing splitting programs into modules

Python is multi-purpose.

Release dates (Wikipedia)

7

dead Incompatibilities

https://pythonclock.org/

8

Fred

9

Fred

Thomas Johan Nanjiang AndersMoritzÅsa

🙏👊

Markus

10

11

12

Monday Tuesday Wednesday Thursday Friday

09:00-12:00 Lectures

12:00-13:00 Lunch

13:00-17:00 Exercises + Project Assi
stan

ts

Eh... 5 days only?

13

1. Explain something
2. Example
3. Practice

Repeat

☜ in pairs

Ideally, the assistants sleep

Adapted pedagogy

14

Monday Tuesday Wednesday Thursday Friday

09:00-12:00 Hands-on Python stuff

12:00-13:00 Lunch

13:00-15:00 Hands-on more Python stuff

15:00-17:00 Own Practice on Main Assignment
Assi

stan
ts

Assi
stan

ts

Assi
stan

ts

Topic Example (me) Practice (You!)

Who you are...

15

Who you are...

16

17

Work in pairs

Raise your hand for help

Ask politely

18

19

20

21

22

Syntax Programming||

23

Lexer

Parser

Analys

Stream of
characters

Stream of
tokens

Abstract
Syntax
Tree

illegal word

24

Lexer

Parser

Analys

One Letter
at a time

Words

Proper
syntax? Run

25

Run
Python

26

Run
Python

Example: 1st jupyter notebook

So far...

builtin types
int

float
str
list

Operations
+, -, * , /, **, %, // ...
+, -, *, /, ...
word[3], word[2:5]
list[2:-3], list[2:3]=['a','b']

So far...

28

builtin types
int

float
str
list

Operations
+, -, * , /, **, %, // ...
+, -, *, /, ...
word[3], word[2:5]
list[2:-3], list[2:3]=['a','b']

Explicit line joining
"something " \
'over ' \
"several " \
'lines.'

Implicit line joining
list = ["something ",

'over ',
"several ",
'lines.']

Comments

29
Blank lines are ignored
and the beginning of a line matters

Literals

30

'Hello' "hi"
3

3.14
"3"

'3.14'
'file.txt'

Values like

they have a type

Identifiers

31

for example: variables
functions
modules
classes

Identifiers

32

for example: variables
functions
modules
classes

Identifiers

33

_ _ _ _ _ _ _ _ _

✓ all letters (uppercase, lowercase)
✓ all digits
✓ the underscore

...

for example: variables

✓ a letter
✓ underscore

digit✗

Identifiers

34

+ - * $ % ; : , ? ! { } () < > " ' | \ @ No

etc...

for example: variables

_ _ _ _ _ _ _ _ _

✓ all letters (uppercase, lowercase)
✓ all digits
✓ the underscore

...

✓ a letter
✓ underscore

digit✗

Keywords

35

Keywords

36

Identifiers of the form:
_* # special meaning for modules
__*__ # System-defined names
__* # special meaning for classes

Online definitions

37

strings ➲

integers ➲

floats ➲

delimiters ➲

operators ➲

https://docs.python.org/3.5/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#integer-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#floating-point-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#delimiters
https://docs.python.org/3.5/reference/lexical_analysis.html#operators

Standard Library

38Example with str

https://docs.python.org/3.5/library/functions.html
https://docs.python.org/3.5/library/stdtypes.html#str.capitalize

range()

39

➥ Notebook 2

https://docs.python.org/3.5/library/stdtypes.html#ranges

fruits = ['Apple', 'Orange']

for fruit in fruits:
 print(fruit)

for x in range(10): #0-9
 # Do something on x
 print('Item:', x)

Iteration - for loop

40

Indentation with Tab character

Iterable

x = 0
while x < 100:
 print(x)
 x += 1

while loop

41

?

a = <choose>
b = <choose>
print(a <op> b) 42

Operations on * numbers
* strings
* lists
...

43

44

Comparators

45

int, float, str

logical
identity

Physical
identity

On sequences

46

eg strings or lists

On sequences

47

eg strings or lists

mutable

Special characters in Strings

48

Our first Python

49

Open a text editor:
* First line: #!/usr/bin/python
* Second line (optional): # -*- coding: <some encoding> -*-

Use a variable to store the following string items:
* Get the kids from school
* Buy groceries
* Fill up the car tank
* call mum
* Pay the electricity bill
* Read a Swedish book with å,ä,ö
* escape the special characters like \n and \t
* Call mum again

50

Open a text editor:
* First line: #!/usr/bin/python
* Second line (optional): # -*- coding: <some encoding> -*-

Use a variable to store the following string items:
* Get the kids from school
* Buy groceries
* Fill up the car tank
* call mum
* Pay the electricity bill
* Read a Swedish book with å,ä,ö
* escape the special characters like \n and \t
* Call mum again

Print a long line of 68 '=' symbols
For each item, print 'Remember to', a space, and then the item
Print again the same long line as above

Our first Python file

51

68

52

Operations on * numbers
* strings
* lists
...

* numbers
* strings
* lists
* IO files
...

open('filename', 'r', encoding='utf-8')

53

open('filename', 'r', encoding='utf-8')

file path
./some/folder/to/file/name
some/folder/to/file/name
/absolute/path/to/file/name
../parent/search/to/file/name
../../../bla/bla/file/name

mode
'r' for read
'w' for write
'a' for append

Eh...guess...

Opening ...ok...
How about closing ?

Automatic closing

54

with open('filename', 'r', encoding='utf-8') as the_file:
 for line in the_file: # the_file is iterable, yeii !
 print(line.rstrip()) # Removing the trailing \n
 # since print() adds one.

Revisit notebook 2

55

Control Flow

Conditional: if / else

for and while loops

56

Conditional: if / else

if condition:
 print('This will be executed')
else:
 print('Otherwise, it is this one')

Indentation

boolean of type bool
True False

Anything that evaluates to

Evaluates to False:
False, None, 0, 0.0, []
... some more (later)

Otherwise True!

else is optional

57

Conditional: if / else

s = input('Want candies?\n')
if s == 'yes':
 print('Later!')
else:
 print('Go clean your room, anyway!')

58

Conditional: if / else

s = input('Want candies?\n')
if s == 'yes':
 print('Later!')
else:
 print('Go clean your room, anyway!')

s = input('Want candies?\n')
if s in ['y','yes','Y','Yes','YES']:
 print('Later!')
else:
 print('Go clean your room, anyway!')

59

Conditional: if / else

shopping =['milk','eggs','bread','butter']
if len(shopping) > 2:
 print("I'll do it tomorrow")
else:
 print('ok, maybe today!')

60

Conditional: if / else

shopping =['milk','eggs','bread','butter']
if shopping:
 print("Get on it")
else:
 print('Finito')

shopping =['milk','eggs','bread','butter']
if len(shopping) > 2:
 print("I'll do it tomorrow")
else:
 print('ok, maybe today!')

61

Conditional: if / else

if foo:
 if bar:
 print(baz)
 else:
 print(q)

62

Conditional: if / else

if foo:
 if bar:
 print(baz)
 else:
 print(q)

if foo:
 if bar:
 print(baz)
else:
 print(q)

Nesting and Indentation

63

Read book_chapter.txt into Python, line by line,
Print the first 50 characters of each line, appending an
ellipsis ... at the end, if necessary.

Nesting and Indentation

64

with open('book_chapter.txt', 'r', encoding='utf-8') as file:
 for line in file: # file is iterable, yeii!
 line = line.strip() # remove white-spaces and \n
 if line: # if the line is not empty
 if len(line) > 50:
 print(line[0:50], '...')
 else:
 print(line[0:50]) # slicing gracefully,
 # but no ellipsis

Read book_chapter.txt into Python, line by line,
Print the first 50 characters of each line, appending an
ellipsis ... at the end, if necessary.

