Inkroduckion ko

& python

— with Application to Bioinformatics

NB:=S

21 /usc/binjeny pythond
~o~ codisgr -8 -

from wtils lnpoct tisc_me, print_orps, prist_retwe
frem veits %
from stils.ma moor: e

O‘f.r:! u'?pm isgort splitext

w -Eﬁ.’ﬂ 4 reat 1

1099159, levels PO, formate“\(sessage)s”)
FTine me

.rw._pfr

dot gt _all_trasceriptel fllasonse™shmn_opisec (ROAIR. 57 gt 1*, clramacames' 7", panee FNSCARMMORLAN 11
transcripts = {}
onm passi Feich all transcripts for the given gene and chromosome

sgger.debug(' Fi-st pass on f1l: %s' & filenase)
Inr ('G'UIMU'!“&—-
Q.(v MOdes"T1") 35 gtf
.-ty “
m n ea.ﬂ-(r‘mﬂ)'?' formatigend))
blocks = ‘unum'\ﬂ

Galy that Ciromcsome wnd
if

locks) « % or @ re commenti, pliose
ibﬂl!l 1= chromosome o7 ¢ ooly that dromosome. Careful: mot comparing integers!
tueulzl 1= 't mﬁ # e Uine should be a tramicrist
) l) # 1s that the right gese?
1
vl # shly (v e real Ve

£ Uhervise, l&&wm for the glvwen gene and chromosome
attributes =)
traescript_id = get_gtf valuel " trasscript_id",attribvtes)

assert(transzript id) # is not None
aceert (tranccript_{d sot in trascerdpte), ("How come T o trancerpt S alrady? \ns\n fnesin\inée® & (trasccript_id, 14ne')

m = int(Hlocks [31)
= TS [4])

m- w1 Af DlocksiG) == '+’ else =)

. it t) the tabls
trm-w w{

rtraed,
exons ' 1{}, # exons will be added in the second jass. Dmpty so ‘ar.

Mm l'““

L.-.houu recsrds () = ()" Format (tremseript_id, tromseripts [t-onscript_td]))

hw::k ms-nvﬂmn-)

Socosd pass, Mdt‘!.'hm‘w'ﬁ.o'mm
Must rescan, can't reuse the jtf {terator: ft's st the end alresdy.

‘T debuy (' Second e85 ')
w.(ﬁl—. m) » gtf:
tldn - unlplk('\ﬂ
if
l.bh&) < or 4 70 commects, flease
@ vy et ui v
!O\oam - 'l-lf' or tleckil2) = “start_sodon’ or blocksl2) w “stop_codon”|

]
continge ¢ Skip that Lire

fewwre = olocks (4
attributes = 3locks (8]

trasscript_id = get_gtf value(transcript ', attribytes)

AT TranEIripT a0 rOT A8 TYABCTAGTE: & ChecKing the s
continge # Skip cuz sot » trascript for that glves gene

if ot gne_rr.searchiattribetes):
prim(*welrd! I should teve 3 gene_id (gene) ia (attr”.fomat (genesgene, sttrmttrintes))

A deature w= "ot
Logger. auo('l'w-un ~on')

o 2 T gl rameriot el gut s’ swoa)

.n-!(mumtm)
A ammn il Ln emanse
! Mywe 1 that s ™8

@time me

gs
1 _transcripts(filename="Homo_sapiens.GRCh38.87. gtf",@sone-'r,‘BENSGOOOOOOMGZG'):

franscripts = {}

First pass:

#

Fetch all transcripts for the given gene and chromosome

Iogger debug(First pass on file %s' % filename)

%s | Gene %s' % (chrouosone,gene))

blocks = line.split("\t")

y that chromosome and
len(blocks) < 9 or # no comments, please
blocks[@] != chromosome or ::;:;nlymthat_ch;nmo;:;;. Careful: not comparing integers!

blocks[2] != 'transcript' or # the line should be a transcript
not gene_re.search(blocks[8]) # Is that the right gene?

Otherwise, it is a transcript for the given gene and chromosome
attributes = blocks[8]

| \farnabies

continue # skip to the next line

wuwchoms

transcript_id = get_gtf_value('transcript_id',attributes) ‘/: _ oo

assert(transcript_id) # is not None

assert (transcript_id not in transcripts), ("How come I see transcript %sraIr~> kst % (transc

(start = int(blocks[3])>

strand = 1 if blocks[6] == '+' else -1

transcripts[transcript id] = {
~stact.

}

‘end':end,
'strand':strand,
'‘exons':{}, # exons will be added in the second pass. Empty so far.
'start_codon': None,
'stop_codon': None

logger.debug('Added record: {} = {}'.format(transcript_id,transcripts[transcript_id]))

logger.debug('Transcripts after first pass')
logger.debug(transcripts)

BdE ™ o e e o e B b 0 b e e I R T S SR, S SR

Repetitive task: automate:

Write code

transform it to executable (compile)
run

checlke/test

start again..

Too slow. =» Python is for you

oo KT R UTRIC Rasie

era&i&&ve task: aubtomake! Shell? Sure!

x Write code But mostly for moving files around
x transform it to executable (compile) and updating text data

* Tu => not for every task,

+ checle/test

+ start again.. Want to

Too slow.. => Python is for you « get some data

*x store them temporarily
to manipulate in some sort of map

«shells are Limiked,

ere&é&iv& task: automake! Shell? Sure!

+ Write code Butk mostly for moving files around
x transform it to executable (compile) and updating text data

* Tu => not for every task.

*x checlk/test

x start again.. Want to

Too slow.. => Python is for you + qeb some data

* store them temporarily
to manipulate in some sort of map

«shells are Limiked,

Python has butlb-=tn cownskructs.

Python offers more structure,
but allowing splitting programs into modules

‘Pj&hom Ls mu&impurpase. é) £

o U7 Vo (—

9

e Python 1.0 - January 1994

» Python 1.5 - December 31, 1997
» Python 1.6 - September 5, 2000
» Python 2.0 - October 16, 2000

e Python 2.1 - April 17, 2001
e Python 2.2 - December 21, 2001
« Python 2.3 - July 29, 2003
» Python 2.4 - November 30, 2004
» Python 2.5 - September 19, 2006
« Python 2.6 - October 1, 2008
e Python 2.7 - July 3, 2010

» Python 3.0 - December 3, 2008

e Python 3.1 - June 27, 2009

e Python 3.2 - February 20, 2011

» Python 3.3 - September 29, 2012
» Python 3.4 - March 16, 2014

e Python 3.5 - September 13, 2015
e Python 3.6 - December 23, 2016

(Wiwﬁpedm)

lnmmpa&abau&aes

Al

!

https://pythonclock.org/

Fred

Fred

Ca

Thomas Johawn

A®

Moritz Naw jiang

Lectures

Luinch

Exercises + ‘Prajea&

Eh«u 5

Aciap&edk ped&gogj

i EXF?LQLM something
2. E:xam[;ate
3. Practice = i Fmirs

fi’;epeo&

Id@.attv, the assistants sleep

gt—

09:00-12:00

12:00-13:00

13:00-18:00

16:00-17:00

Tuesd.aj Wednesdav Thursd&v

Hands-on Python stuff

Hands-on more Python stuff

Owh Practice on Main Assignment

Nho , | T’Q

Position

22 responses

@ Master student
@ PhD student
post-doc

@ Researcher

@ Pr

@ Bioinformatician

@ Research Engineer

= --a

-

N ho o , | T’Q.

Position

22 responses

@ Master student

@ PhD student

) post-doc

@ Researcher

@ Pr

@ Bioinformatician

@ Research Engineer

Programming/Scripting experience

22 responses

@ | have never used a terminal.
@ | can run scripts written by others.

O | use, modify and run scripts
practically every day.

@ | know another programming
language (eg Perl, PHP, C, Java,
R, ...).

® 0P & mecsudionto ytten | HTY T X

€2 C

Seowrs g nbawedergtiet.

A B Tepics @8 Pojct ¥ Prefminades & Hep

Introcduction to Python - HT17

Tait oo wan pronices 8 peacieal introdoction ta the uriting of Dytas pagrane lor tha cemglots navies Participants s laad
#rangh tha coen aepacte of Pyshon illiskatad hy & enviee of exanpe peograme | hoa camplavios of the coures, stthniun
parteipanie will be abls 1o write ginpl Python prograrme froer scratch and 1o customize mare orplix 2ode © 1t their neads.

The 00 AMMNY 1S 2 xily and pa'mi easy

e FARGH Yir T AN P P

o The oLrse is sutable for conpete beginners And AsSUMEs ro pricr POGaNMNG exdehance (Deyond the ability Ic use &
bect aditor]

o Avavy hasie incwiadon of LINIY wonld Pa 50 schaniagh, &ien st ravigaing thee gh Inldaet and issiing mnermsnei: Al a ehall
pareet Wi will aevt baseh Livix in catsil' Whae crures aon svsilabln at Sei ifal an for 2

Balora he first lecture, we réquré you 10 folow thase peliminary sps

Fom Morday Orctobor §% to Fiday October 137 2017 (wook 41)

o 09:00 - 1200 Lectares + Hands-on (ncudng a Fika bwea<)
» 12.0) - 13:00 Lanch

1100 1800 Lectaros o Mande.on

v 1600 . 1700 Pacice tine (wih assstants)

Qurivg his coune, you wil isam about

» Corg concopti adout Pytron syviac Data tvpes, blocks ard indentation, varabeo scoping, hention, ‘unctions methods ad
agumonts

o DHerent ways tc control progran fow usng Kops and conditonal taats

v Pagelar erpreaacns and parten matching

o Wity Wrtions sl Ley pracion ways Ol meklng D usable

o Fsading franand witig W e
Co0e packaging and Fytron soranes

o How 0 work with bidicgical data using eclemal IKranes (Ttime alows

» Learning Outcomes

Alter ths cou'se you should be abie ©

o Edit and run Python ccde

o W\rite fil-processing python programs that praduce output 10 the terminal andior extenél files.
o Cedle stad-alone pyhon grograns 10 prozeds tiohgical daa

o Know how 1o 3evelop your s«ills in Python after tre couwrse (inciuding debugging)

Learn ng objectives (ie goals for the teachers)
o brerease the studert’s tocbelt for betier qualty and perormance at work

o Make students undersand that there 5 mome 1 prograrnming than only krowing the syrtax of a lancuaze, This eaxperiseis
pecsaly vhat NBIS provides.

to Python | HT17 X

1ttps://nbisweden.github.io/PythonCourse/ht17/) ¢ |

" X Preliminaries 19

Introduction to Python - HT17

his course provides a practical introduction to the writing of Python programs for the complete novice. Participants are lead
rough the core aspects of Python illustrated by a series of example programs. Upon completion of the course, attentive
articipants will be able to write simple Python programs from scratch and to customize more complex code to fit their needs.

The craft of programming is about taking design decisions to avoid overwhelming complexity and permit easy
maintenance over time, insuring reliability (which goes beyond debugging) and utilizing computer resources
efficiently.

o The course is suitable for complete beginners and assumes no prior programming experience (beyond the ability to use a
text editor).

o A very basic knowledge of UNIX would be an advantage, such as navigating through folders and issuing commands at a shell
prompt. We will not teach Unix in detail: Other course are available at SciLifeLab for it.

Before the first lecture, we require you to follow these preliminary steps.

@ T @ @ osboryow man assgmen X

’

= C & Sacuns hitos iahbescer.gitbubda ™y
Introchaction to Python - HTTY
* = Topics &= Project X Preliminares a

About your main assignment

Background: For many cieaages with <nown causative mutations, screenng
methods have tean devaopad 10 calect whather pacple have a high rigk of
bacoming sick, aven bafara the aneat of tha actual disaass

Over the bst fow years, the cost of {ull penome sequencng has gone dawn so
that, n some cases. @ might ba cheaper to coleat the complate gename
eaquence of patiente with a high riek of carying varanta assccigtad with the
dizease, rather than using targedad ecreaning procaduras.

Cystic flicreeis i3 8 compax desgss, ‘where patients oftan manifest the
fallvaing sympioms: problems with lung funations, diabates and infertility.
From a genetic paint af view, thare are several mutaticns asscaxied with ths
dsease. In particular, the CFTA gene (short far Cystic Fibross
Tranemamerane Cenductance Raguleier) encodes an ion channe! protein
acting in epinalial cale, end carree saveral non-synonymoue genelic vestants
with arkerations kading to pramature sicp codoneg, that are known to cauee the
dizease

Goal: Inths ggnment, you have accaee to 1he haman refarancs ganome 83
well a3 the gename annaletan. In eddtion, you have Il genome saguence
data fram five indwvidua's from a family at risk of carrying mutations relased 1o

the dsaase.

Your task Is to write a Pythen program that will extrect the CFTA gens,
ransate the gene saguencs to e corrsaponding amino-acid sequenca and
based on the Mlared amho-acid saguence cateemine whathar any of the 1ve
given Indhviduala I8 atlectad.

» Fetch the appropriate files

The main task s divides in sovers! sieps. The fimt step is w2 feich the sequaence fla (in tasts farmat) amd the approprate
arnctation 1ie (i Cre forat] rom the Engenb dalaoess.

The CTFA gene & chvomoscme 7.

1. What is the lergth of the chinsan DNA sequence?

L]

2. How many penes are annotated n the GTF fie?
L H

4. What fracton of the chramzsore is arctated as genes?

» Architect a method

All1he lellowing 1e8ke aw row reiated to the CTFR gena.

In the annctation lile 1*om the Engambl datatase). that gens has the Id =x=c00000 001626 0N Chromasoms 7.

» Course Content |

During this course, you will learn about:

Core concepis about Python syntax: Data types, blocks and indentation, var able scoping, iteraton, functions, methocs end
arguments
Different ways to control program flow using loops and conditonal tests
» Regular expressions and pattern matching
Writing functions and bsast-practice ways of making them usable
Reading from and writing to filcs
Code packaging and Python libraries
> How to wark with bological data using externa’ libraries (if time allows).

» Learning Outcomes |

After this course you should be able to:

Ecit and run Python code

» Write flle-processlng python programs that produce output to the terminal and/or external files.
Create stand-alona pythcn programs to procass biological data
Know how to develop your skills n Python after the course (including debugging)

Learning objectives (ie goals for the teachers)

o Increase the student’s toolbelt for better quality and performance at work
o Make students understand that there is mare to programming than only knmowing ‘he syntax of a language. This expertise is

precisely what NBIS provides.

Stream of
characters

! Stream of
§ ltokens

Abstract
va\Eax ,
Tree |

One Letbter
at a kime

t Words

illegal word #”

‘Frc::rper ,

Ru

Ru

Ru

Exampi&: 1 st ju.pv&er noteboole

builkin E:;;F'es

ik
floak

sky
Lisk

Oyem&mus
+, o=k S L S
I I /
word[ﬁ], wmrd[Z:ﬁ]
Liskt[2:-3], List[2:3]=["a,'b']

« *,

builkin types Operations
tht T B A T
floak +, = % [,
skr word[3], word[2:5]
Lisk Lisk[2:-3], List[2:3]=["a,'b']
Explicit line joining # Implicit line joining
"something " \ List = ["something ",
'over \ 'over ',
"several " N "several ",
'Lines.' 'Lines."] S

X

Comments

A traditional one line comment
mmmnn

Any string not assigned to a variliable 1is
conslidered a comment.

This 1s an example of a multi-line comment.

mmnn

"This 1s a single line comment"

Blank lines are ignored

and the beginning of a line matters

'Hello' "hi"
=2
3.14
”" 3“
93‘143
'file.bxt!

Values Lilke

%kev have a type

for example: variables
functions

modules

classes

Identifiers

for example: variables
functions

modules

classes

Identifiers are unlimited in length. Case is significant.

identifier xid start xid_continuc¥

id_start <all characters in general categocies La, Ll, Lt, L, Lo, N1, the underscore, and charactecs with the Cther ID Start property™
id_continue <all characters in id start, plus characters in the categories Mn, Mc, NWNd, Pc and others with the Other ID Continue property>
xid start <all charactere in id start whose NFRC normalizaticn is in "id start xid continuer'>

xid_continue <all charactere in id continue whcoee NFXC normalization is in "id continuet*'>

The Unicode category codes mentioned above stand for:

Lu - uppercase letters
L/ = lowercase |etters
Lr- titlecase letters
Lm - modifier letters

Lo - other letters

NI - |letter numbers

Mn - nonspacing marks

Mc - spacing combining marks
Nd - decimal numbers

FPc - connector punctuations
Other_ID_Start - explicit list of characters in ProplList.txt to support backwards com patibility
Other_ID_Continue - likewise

for example: variables

v a letter / all letters (uppercase, Llowercase)
Vunderscore Y all digits
X digit v the underscore

for example: variables

V a letter / all letters (uppercase, Llowercase)
Vunderscore Y all digits
X digit v/ the underscore

class
NV
def

del

elif
else
SXcEPE

S
for
—
gobal
1f

Lmport
in

1s
Lamoda
B
not

or

pass
s

return
try
While
With
yield

|
|

{
!

N

False
None

True
and

as
assert
break

finally
continue for
def from nonlocal
del global not
elif 1f or
else import pass
except in ralise

Identifiers of the form:

*

*

*

| # special meaning for modules
) # System-defined names
) # special meaning for classes

|
l

4

Online definitions

sktrings O
integers O
floaks D
OPQTQ&C}?’S >

delimiters

https://docs.python.org/3.5/reference/lexical_analysis.html#string-and-bytes-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#integer-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#floating-point-literals
https://docs.python.org/3.5/reference/lexical_analysis.html#delimiters
https://docs.python.org/3.5/reference/lexical_analysis.html#operators

S&th&\‘d ﬁ Lb T’QT ‘

Built-in Functions

abs () dict() help() <min()) setattr()

all() dir() nex() next () slice()

any() divmod() id() object() sorted()

ascii() enumerate() input() oct () staticmeghod()

bin () eval() <:int<)) {(open() str()

bocl() exec() isinstance() ord() sum()

bytearray() filter() issubclass() pow() super ()

bytes () (float()) iter() <print()) tuple ()
callable() format() len() broperty() {:::i:ype() wt::}

chr () frozenset () list() range() vars ()

classmethod () getattr() locals() repr () zip()

compile() globals() map () reversed() import ()

complex() hasattr() {::: max() -j::> round()

delattr() hash () memoryview() set()

Exampte wibh str

https://docs.python.org/3.5/library/functions.html
https://docs.python.org/3.5/library/stdtypes.html#str.capitalize

4.6.6. Ranges

The ranae type represents @ immutable sequance of numbars ajd is commonly used for loopina a specific
number of times in for loops

class range(stop)

class range(start, stoo|, step)])
The argurments W the range wonstructor must be inkegers (gither builtl-in ant ur ary vbject thal
implements the __:index_ special method). If the step ergument is omitted, it defeults to 1. If the start
argumen: is omitted, it defau'ts to 0. If step is zero, valueError is raised

For a positive step, the contents of a rang2 r are determined dy the formula x[i] = stert + step*i
where i >= 0 and r[i] < stop.

For a negative step, the conients of the range are still determined by the formula r(i) =« start +
step*i, but the constraints a'e i >= 0and r[(i] > stop.

A range object will be errpty If £|0) does not meet the value constraint. Ranges do suppo-t negative
indices, but these are interpreted a: indexing from the end of the sequence desermined by the positive
indices.

Ranges containing absolute values ‘arger than sys.naxsize are permittad but some features (such as
len()) may raise overflowError.

Range examples:

>>»> list(rance(.0))

[0, L, 2, 3, 4, 5, 6, 7, 8,
>»> list(rance(.. 11))

(L, 2,3, 4, 5,6, 7, 8,9,
>>»> lLast(rance(?, 30, %))
(n, 5, 10, 15, 20, 25)

>»> list(rance(0, .0, 3))
[0, 3, 6, 9]

*»»>» list(xance(d, -10, -1))

(0, -1, -2, -3, -4, -5, -6, -i, -8, -9

T:> List(rance(0)) - NO&QbOCJQ 2

>»> list(rance(.. 0))

()

Ranges implement all of the common sequence gperations except concatenation and repetition (due to
tha fact that range objecti can cnly represent sequences that follow a strict pattem and repatition and
concatenation will usually vio ate that pattern).

start !
The value of the srart parameter (or 0 if the paramerar was not susplied) 39“_

sf.lJ 7 b _’_.

https://docs.python.org/3.5/library/stdtypes.html#ranges

Iteration - for loop

s Ikerable

for x in range(lO(E)#O—9
Do something ¢gn x
print('Item: ', X)

“Indentation with Tab character

fruits/ = ['Apple;, 'Orange’]

for /fruit in fruit£z)
print (fruit)

x = 0

while x < 100:
print (X)

o o .‘m

LN 4

=

&

Operations on) x umbers
= * S&TE'MSS
x Lisks

e

Operation Result
y sum of xand y

difference of xand y

Y
y product of x and y
Y

quotient of x and y

floored quotient of xand y

remainderof x / y

X negated

x unchanged

absolute value or magnitude of x
int(x) x converted to integer
float (x) x converted to floating point

complex(re, im) a complex number with real part re, imaginary part im. im
defaults to zero.

c.conjugate() conjugate of the complex number ¢
divmod(x, Vy) the pair (x // y, x % y)
pow(x, Y) X to the power y

X %% y X to the power y

Operation

math.trunc(x)
round(x[, nl)

math.floor(x)

math.ceil(x)

Result

X truncated to Integral

X rounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
the greatest Integral <= X

the least Tntegral >= x

logical |

Ed@.mﬁ&y

Operation Meaning
strictly less than
less than or equal
strictly greater than
greater than or equal
equal
not equal
object identity

negated object identity

ink, floak, skr

Operation
=W

X

S

8 *norn * s
s[i]
s[i:]j]
8[izj:k]
len(s)
min(s)
max(s)

s.index(x[, i[, j11)

s.count(x)

OM sequences

egs&rg s or Lisks

Result

True if an item of s is equal to x, else False
False if an item of s is equal to X, else True
the concatenation of s and ¢

gquivalent to adding s to itself 7 times

ith item of s, arigin 0

slice of s from /ito

slice of s from /to jwith step &

length of s
smallest item of s
largest item of s

index of the first occurrence of x in s (at or after index /and befare
index J)

total number of occurrences of xin s

Qperation
8[i] = x

gfi:j] = ¢t

del s[i:]]
B[1i:]:k] =
del s[i:j:k]
B.append(x)

.clear()

-copy()

.extend(t) Ors += t

k= n

.insert(i,

-pop([1i])
remove(x)

.reverse()

X)

~' s or Lisks

Result
item 7/ of 5 is replaced by x

slice of s from Jjto jis replaced by the contents of the
iterable ¢

same as g[(1i:3] = []
the elements of s[i:::1k] are replaced by thase of ¢
removes the elements of s[(i:j:k] from the list

appends x ta the end of the sequence (same as
s[len(s):len(s)] = [x])

removes all items from s (same as del s[:])
creates a shallow copy of s (same as s[:])

extends s with the contents of r(for the most part the
same as s[len(s):len(s)] = t)

updates s with its contents repeated n times

inserts x into s at the index given by i (same as s[i:1]
= [x])

retrieves the item at j and also removes it from s
remove the first item from s where sri] ==

reverses the items of s in place

Special

Escape Sequence

\newline

Meaning

Backslash and newline ignored
Backslash (\)

Single quote (')

Double quote (")

ASCII Bell (BEL)

ASCII Backspace (BS)

ASCII Formfeed (FF)

ASCII Linefeed (LF)

ASCII Carriage Return (CR)
ASCII Horizontal Tab (TAB)
ASCII Vertical Tab (VT)

Character with octal value ooo

Character with hex value hh

Strings

= --a

-

0

Our ﬁ Python 2

Open a text editor:
* First Line: #! /usr/bin/python
+ Second line (optional): # —- coding: <some encodingr —x-

Use a variable ko store the following string ikems:
* Creb the kids from school

Buy groceries

Fill up the car tanik

call mum

Pay the electricity bill

Read a Swedish book with a,8,0

escape the special characters Lile \n and \t
Call mum again

¥ ¥ ¥k ¥ ¥ ¥x ¥

|
|

4

L 4

Open a text editor:
x Firsk Line: #! /usr/bin/python
+ Second line (optional): # —- coding: <some encodings —x-

Use a variable to store the following string items:
x Creb the kids from school

Buy groceries

Fill up the car tank

call wum

Pay the electricity bill

Read a Swedish book with a,a,0

escape Ehe sye«cmt charactkers Lilke \ and \t

* ¥ ¥k ¥ * *x ¥

Call mum again

Print a long line of &% '=' s:,mbc)i.s
For each item, print 'Remember b, a space, and then the item
Print again the same long line as above

|
i

R

#!/usr/bin/env python3
-¥- coding: utf-8 —x-

remember_todo = ['Get the kids from school’,
'Buy groceries’,
'Fill up the car tank',
'Call mum',
'Pay the electricity bill'
'Read a swedish book with 5,5,6',

r'escape the special character like \n and \t',
'Call mum again', # Look...an extra comma...
No problem for Python

]
fake_line = '=' *}f LY

print(fake_line)

¥

%
-
LS
-v. 'l-

~ for item in remember_todo:
print('Remember to', item.lower())

print(fake_line)

U;=== First-loop.py ALL L25 {Python +3 MMM) 17.49 1.
(No changes need to b= saved)

——

open('filename’,

Gperaﬁioms e « y\umbers

skrings
* Lisks
% I0 files

e

'r', encoding='utf-8")

open('filename', 'r', encoding='utf-8")

file path mode
./some/folder/to/file/name . 28 |
some/folder/to/file/name § {01" reofd
/absolute/path/to/file/name 'w' for write
. ./parent/search/to/file/name 1o ‘fCJ-T’ &FPQMG{
C/h o/ i Blay b la AEEREeE A aie

Opening ..ok..

How about closing 7

Eh e Suess e

|
l

Automatic closing

with open('filename', 'r', encoding='utf-8') as the file:
for line in the file: # the file is iterable, yeii !

print(line.rstrip()) # Removing the trailing \n
since print() adds one.

Revisit notebool 2 5 %

¢ ~ Control Flow

for and while LOOPS

Condiktional: if / else

Condibtional: if / else

Anything that evaluates to
gaat&ah of type bool

True F'alse

if condition:
Ll print('This will be executed')
Indentationz™ else:
o print('Otherwise, it is this one')

else L8 OP&&OMO\L

Evaluates to False:
False, None =uusEsus s

« some more (later)

Otherwise True! =5

Condibtional: if / else

= input('Want candies?\n')
if s 'yes':

print('Later! ')
else:
print('Go clean your room, anyway!')

|
b

Condibtional: if / else

s = input('Want candies?\n')
if s == 'yes':
print('Later!')
else:
print('Go clean your room, anyway!')

s = input('Want candies?\n')

if s in ['y','yes','Y',"'Yes', 'YES']:
print('Later!')

else:
print('Go clean your room, anyway!')

Al
!

“.' 1

Condibtional: if / else

shopping =['milk', 'eggs’', 'bread', 'butter’']
if len(shopping) > 2:

print("I'll do it tomorrow")
else:
print('ok, maybe today!')

|

Condibtional: if / else

shopping =['milk', 'eggs’', 'bread', 'butter']
if len(shopping) > 2:

print("I'll do it tomorrow")
else:

print('ok, maybe today!')

shopping =['milk', 'eggs’', 'bread', 'butter’']
if shopping:

print("Get on it")
else:

print('Finito')

Al
!

-‘“.. ' |" i

Condibtional: if / else

if foo:
if bar:

print (baz)
else:
print (q)

if foo:
if bar:

print (baz)
else:
print(q)

Condikional: if /

else

if foo:
if bar:
print (baz)
else:
print (q)

NesEhiage o ey Low

Read book chapter.txt into Python, line by Line,
Print the first §0 characters of each line, appending an
ellipsis .. at the end, i necessary,

Neskilen Lo

Read book chapter.txt into Python, line by Line,
Print the first §0 characters of each line, appending an
ellipsis .. at the end, i necessary,

with open('book chapter.txt', 'r', encoding='utf-8') as file:
for line in file: # file is iterable, yeii!
line = line.strip() # remove white-spaces and \n
if line: # 1f the line is not empty

if len(line) > 50:
print(line[0:50], '...")
else:
print(line[0:50]) # slicing gracefully,
but no ellipsis

Goal: In this assignment, you have access to the human reference genome as
well as the genome annotation. In additicn, you have full genome sequence
data from five individuals from a family at risk of camrying mutations related to
the disease.

Your task is to wrile a Python program that will extract the CFTR gene,
translate the gene sequence to its corresponding amino-acid sequence and
based on the inferred amino-acid sequence determine whether any of the five
given individuals is affected.

» [Fetch the appropriate files

The man task is divided in several steps. The first step is tc fetch the sequence file (in fasta fonmat) and the appropriate
annotation fie (in cTtr format) from the Ensembl! database.

The CTFR gene s chromosome 7.

1. What is the length of the chosen DNA sequence?
» Tip

2. How many genes are annotated in tha GTF file?
» Note

3. What fraction of the chromosome s annotated as genes?

» Architect a method

All the following tasks are now relaied to the CTFR gene.

In the annotation file (from the Ensembl database), that gene has the id Ensco020000:625 on chromesoms 7.

1. How many transcripts can this gene generate?

