Reconstructing the
demographic history of
populations
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Populations Genomics in Practice 2023 Annotated slides with additional notes



But why?

First things first

To understand the past
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PanAf dataset Past connectivity and population dynamics

But why?

First things first

To Inform conservation
projects and initiatives

9 48 sampling sites

‘ 828 geolocalized databaca
non-invasive samples

(sw Chr21 coverage ~1.89x ;

Fontsere et al. (2022) Cell Genomics
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Population history

It can get messy

Demographic events:

- Population split
time

- Migration events

- Changes in effective population sizes

- Temporal changes in migration rates
and effective sizes
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Population history

It can get messy
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Demographic events:

- Population split

- Migration events

- Changes in effective population sizes

- Temporal changes in migration rates
and effective sizes




Genomes vs Demography

Demography wil affect the entire genome
- Recombination

- Natural selection acting on specific
regions of the chromosome

- The combination of all aspects will
cause a difference between gene trees
and population trees.
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Neutral mutations

We assume all alleles have the same
fitness. And the tree shape is determined
by the demography of these populations,
no mutations.

Mutations will accumulate as a Poisson
process, so longer branches = more
mutations.
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Gene trees vs growing populations

time

* Coalescent rate is larger in smaller
populations: smaller intervals, most

A events in ancestral population.
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A mix of mutations shared by some Most mutations are singletons, not shared

lineages and singletons between any lineages.



Gene trees vs bottlenecks

time
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A mix of mutations shared by some Most lineages share the same mutations.

lineages and singletons Loss of diversity.



If only...

If we could observe all gene trees we
could reconstruct the demographic
history from them.

The next best thing is to observe
mutations and allele frequencies.
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Summarizing your genomic data

Observing allele frequencies

a outgroup sequence CCATGATCTCCTTGAGTGGG = Outgroup data
campie | CCAAGCTCCTCTTGAGGGAG
sampie 2 CTAAGCACCCCTGGAGGGAC
sampie 3 GTATACTCCCTCTGAGTTGG
sampie ¢ CTAAGCTCTCCTTGAGGGAG
sampie s GTAAGATCCTCTGGAGGGA ———
sampie 8 CTAAGATCCCCTTCTGTGAG olymorphism ddia
sampie 7 CTGAGCTGCCTTTCAGTGA
<ampie 8 CTAAACTCCCCTTGAGTTAG
sampie 8 CTAAACTCCCTTTGATTGGG
sample 10 GTAAGCTCCCTTTGAGGGGG

Booker et al. (2017) BMC Biology



Site frequency spectrum (SFS)

One way is to summarize your genomic data.

Data —» SFS

Booker et al. (2017) BMC Biology



Site frequency spectrum (SFS)

One way is to summarize your genomic data.
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Vitor Sousa, 2019



Site frequency spectrum (SFS)

a outgroup sequence CCATGATCTCCTTGAGTGGG =  Outgroup data
campie | COAAGCTCCTCTTGAGGGAG
. 9 sampie 3 (5 AC & TG
Folded: We don’t have an campie ¢ CTAAGC TCTCCTTGAGGGAG
outgroup, so we use the allele with rie CTAAGATCCCCTTCTGTGAG  (*Pomophin i
g p y sampie 7 CTGAGCTGCCTTTCAGTGAG
- ' <ampe 2 CTAAACTCCCCTTGAGTTAG
hlgher frequency IS treated as a compie 8 CTAAACTCCCTTTGATTGGG
cample 10 GTAAGC TCCCTTTGAGGGGG
reference. 3 ;H 1\3'2’1'1'1’2'4&2‘2‘1'1512'11 —  Minor allele count
31911/11318/1(119(2/41112|2/111/52(/|]1 == Denved allele count
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. b Folded site frequency spectrum c Unfolded site frequency spectrum
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Additional suggested reading:

-/ /i i i ?id=10. - . .
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010677 Booker et al. (2017) BMC Biology



Site frequency spectrum (SFS)
It works with genotype call data SNAPZ
I el il el il

(You must have >10x coverage) individua
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Booker et al. (2017) BMC Biology



Site frequency spectrum (SFS)

You can get certain initial insights from SFS...

0,7 -

M Stationarity M Expansion Bottleneck

Relative frequency of SNP counts
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Derived allele frequency

Booker et al. (2017) BMC Biology



Site frequency spectrum (SFS)

It works for 2 populations too...

But beware!

- It ignores linkage 0 2 4 6 & 10

Population 1
log(prob)

B IS

-12 -10 -8 -6 -4 -2

Booker et al. (2017) BMC Biology



What about that modeling thing?



We can also model the evolutionary history

Remember it assumes your data is good!
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We can also model the evolutionary history

You can Incorporate
Inumerous parameters...

Because populations can
have tricky histories.

|Isolation

UL
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Inumerous parameters...

Because populations can
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We can also model the evolutionary history

You can Incorporate
Inumerous parameters...

Because populations can
have tricky histories.

Isolation with migration

UL




We can also model the evolutionary history

- Ne (effective population size)
- The split time (ts)
- Migration rates

- Selection
- Mutation rate
- Recombination rate

LI




We can also model the evolutionary history

Ne (effective population size)

The size of the population that
would give you the same
behavior as the population of
Interest.

It’s not the census size!

Sometimes more affected by
selection than drift.

UL




We can also model the evolutionary history
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We can also model the evolutionary history

Data
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Ryan Gutenkunst, 2016, evomics.org



Many ways to simulate

Via Coalescent

Expansion Structured population

It aims to model the genealogy of / K
_ /A

MMMMM

sampled sequences;

The rate is proportional do 1/Ne;
It can model recombination;

Mutations are added via a Poisson
Process;

Derived allele frequency

Selection :(

Ryan Gutenkunst, 2016, evomics.org



Many ways to simulate

Original slides says “Diffusion"
Forward-in-time

It aims model the distribution of
allele frequencies in the
population(s)

Simulation of selection is
straightforward

Kimura
(1964) | Applied Prob

Linkage Is very challenging
If you’re curious about it, read the first paper on this:

Diffusion models Iin population genetics by Motoo Kimura

https://www.well.ox.ac.uk/~gerton/Gulbenkian/kimura-diffusion.pdf

Ryan Gutenkunst, 2016, evomics.org


https://www.well.ox.ac.uk/~gerton/Gulbenkian/kimura-diffusion.pdf

Inferring demographic history from SFS

d outgroup sequence CCATGATCTC
sampie 1 CCAAGCTCC1
sampie 2 CTAAGCACC(C
sampie 3 GTATACTCCC
sampie ¢ CTAAGCTCTC
sampie 5 GTAAGATCCT
sample 8 CTAAGATCCC
sample 7 CTGAGCTGCC
sampie 8 CTAAACTCCC
sample 8 CTAAACTCCC

sample 10 GTAAGCTCCC(

Genomic data

Pplt nl

SFS (observed)

log(prob)
pw:—

-12 -10 -8 -4

Modeling with .
all those parameters SFS (expected)




Ways to compare model and data

a outgrovp sequence CCATGATCTC
sampe 1 CCAAGCTCC 8
sampie 2 CTAAGCACC(
sampie 3 GTATACTCCC
sampie ¢ CTAAGCTCTC

(=)

Likelihood

<ampie 2t GTAAGATCCT

Population 2
»

[ |
= b Frequentist
sampie 7 CTGAGCTGCC 2 ’
sampie 3 CTAAACTCCC
sampie 8 CTAAACTCCC 0 . 8
sample 10 GTAAGCTCCC 0 2 4 6 8 10 %‘ 6
Genomic data ropuiatont z,
SFS (observed) )
2 || ||
= Likelihood
’ ’ Po‘:)ulatioﬁn 1 i ‘
log(prob)
m:'-:—
Modeling with
g SFS (expected)

all those parameters

Bayesian




Ways to compare model and data

v . _ Bayesian
Likelihood Frequentist
N s | Sample the posterior
Plrobablllty of the data MaX|m|ze functlon to distribution of parameters
given the model find best-fit parameters based on a likelihood

function



Inferring demographic history from SFS

Many programs do this;

b
10 ]
a outgroup sequence CCATGATCTC

sampie 1t CCAAGCTCC1 8

sample 2 CTAAG(?AC(?C ~N

sampie 3 GTATACTCCC 56

sampie ¢ CTAAGCTCTC 5
sampie s GTAAGATCCT g 4
sample 8 CTAAGATCCC =
sample 7 CTGAGCTGCC 2
sampie 38 CTAAACTCCC
sample 9 CTAAA(:TCCC 0 .
sample 10 GTAAGCTCCC(C 0 2 4 6 8 10

Population 1

SFS (observed)

Likelinooc (Coalescence)

\ b FaStS|mCOa|2 (Excoffier et al. 2013)

MOml 1 and 2 (Kamm et al. 2015)

/y Rarecoal (Schiffels et al. 2016)
O EEesed Original slides says “Diffusion”

(Forward-in-time)
oaol (Gutenkunst et al. 2009)

Mult POP (Lukic and Hey 2012)

Genomic data

Modeling with
all those parameters

Go to the last slide and get a more comprehensive list of programs for this!!



The table

It’s basically mandatory at this point

(@) COMPUTATIONAL TOOLS

'Methods and models for unravelling
human evolutionary history

Joshua G. Schraiber and Joshua M. Akey

https.//www.nature.com/articles/nrg4005

Nature Reviews Genetics,2015; do1:10.1038/nrg4005

Name
STRUCTURE

FRAPPE
ADMIXTURE
fastSTRUCTURE
Structurama
HAPMIX

fineSTRUCTURE

GLOBETROTTER

LAMP
PCAdmix
dadi
Fastsimcoal2
Treemix
fastNeutrino
DoRIS

IBS tract
inference
PSMC
MSMC

CoalHMM

diCal

LAMARC
BEAST
MCMCcoal
G-PhoCS

Exact likelihoods
using generating
functions

Data type

Unlinked multi-allelic
genotypes

Unlinked bi-allelic SNVs
Unlinked bi-allelic SNVs
Unlinked bi-allelic SNVs

Unlinked multi-allelic
genotypes

Phased haplotypes;
reference panel

Phased haplotypes

Phased haplotypes

Phased haplotypes;
reference panel

Phased haplotypes

Frequency spectrum of
unlinked bi-allelic SNVs

Frequency spectrum of
unlinked bi-allelic SNVs

Frequencies of unlinked
bi-allelic SNVs

Frequency spectrum of
unlinked bi-allelic SNVs

Lengths of IBD blocks
between pairs of individuals

Lengths of IBS blocks
between pairs of individuals

Diploid genotypes from one
individual

Whole genome, phased
haplotypes

Whole genome, phased
haplotypes

Medium-length, phased
haplotypes

Short, phased haplotypes
Short, phased haplotypes
Short, phased haplotypes
Short, (un)phased

haplotypes
Short, phased haplotypes

| Table 1 | Software for demographic inferences

Inference

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture
Chromosome painting

Population
structure, admixture,
chromosome painting

Population

structure, admixture,
chromosome painting
Chromosome painting
Chromosome painting,
population structure
Demographic history
Demographic history
Admixture graph
Demographic history
Demographic history
Demographic

Demographic history

Demographic history
Demographic history

Demographic history

Demographic history

Species trees, effective
population sizes

Divergence times
between populations

Demographic history

Demographic history

Notes

User-friendly GUI; can be computationally demanding
Alexander et al.*! argue that convergence is not guaranteed
Estimates the number of populations via cross-validation error

Obtains variational Bayesian estimates of posterior probability
distribution

Uses a Dirichlet process to estimate the number of populations
Requires populations to be specified a priori

Can be used to identify the number and identity of populations

Extends the fineSTRUCTURE approach to estimate unsampled
ancestral populations and admixture times

Identifies local ancestry in windows, rather than using an HMM,
so is more discrete than other approaches

Uses PCA in small chunks followed by an HMM to estimate local
ancestry

Requires some Python-coding skills; applicable to up to three
populations

Can also be used to simulate data under the SMC

Highly multimodal likelihood surface and heuristic search; redo
inference from many starting points

Applicable only to a single population; designed specifically for
extremely large sample sizes

IBD must be inferred (for example, using Beagle or GERMLINE);
specification of lower cut-off minimizes false-negative IBD tracts

IBS can easily be confounded by missing data and/or sequencing
errors

Best used in MSMC's PSMC mode, which uses the SMC to
more accurately model recombination than the original PSMC;
applicable to asingle population

Requires large amounts of RAM; cross-coalescence rate should
not be interpreted as migration rate

Multiple applications, including inference of population sizes,
migration rates and incomplete lineage sorting

Uses shorter sequences than MSMC, but can be applied to
multiple individuals in complex demographic models; infers
explicit population genetic parameters for migration rates

Requires Monte Carlo sampling of coalescent genealogies; very
flexible

Used mainly as a method of phylogenetic inference. Can also
infer population size history

Now incorporated into the software BPP**!

Incorporates migration into the MCMCcoal framework. Averages
over unphased haplotypes

Implemented in Mathematica; applicable only to specific classes
of multi-population models
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BEAST, Bayesian evolutionary analysis by sampling trees; BPP, Bayesian phylogenetics and h?/logeo ra phg; CoalHMM, coalescent HMM; dadi, diffusion approximations
eli ,

for demographic inference; diCal, demographic inference using composite approximate li

hood; DoRIS, demographic reconstruction via IBD sharing;

G-PhoCS, generalized phylogenetic coalescent sampler; GERMLINE, genetic error-tolerant regional matching with linear-time extension; GUI, graphical user interface;
HMM, hidden Markov model; IBD, identity by descent; IBS, identity by state; LAMARC, likelihood anaXsis with metropolis algorithm using random coalescence; LAMP,
PC P

local ancestry in admixed populations; MCMC, Markov chain Monte Carlo; MSMC, multiple SMC;

principal components analysis;

random access memory; SMC, sequentially Markov coalescent; SNVs, single nucleotide variants.

MC, pairwise SMC; RAM,



