Sequentially Markovian Coalescence André E. R. Soares

Populations Genomics in Practice 2023

The idea

To reconstruct the demographic history of a species from genome sequences.

The most common methods to do so

Inference of human population history from individual whole-genome sequences

Heng Li^{1,2} & Richard Durbin¹

Published: 22 June 2014

Inferring human population size and separation history from multiple genome sequences

Stephan Schiffels 🗠 & Richard Durbin 🗠

Nature Genetics 46, 919–925 (2014) Cite this article

PSMC

doi:10.1038/nature10231

MSMC

The most common methods to do so

PSMC Unphased genome One diploid individual

MSMC Phased genomes Many individuals

Coalescence methods So it has some **

Some assumptions and particularities:

- Neutral evolution
- Panmitic population: equal coalescence probabilities for all pairs of lineages

- Coalescence rate is related to population size. (as seen earlier)

If we have a genealogy that shows when the coalescent events happened, we then can infer the population size of a population.

Sequentially Markovian Coalescent Think different

Traditional coalescence methods

- They work backwards
- They build full genealogies from modern/extant samples.

Sequentially Markovian Coalescence

- They go along the genome
- It builds a "local" genealogy for each locus on the genome.

How does it work?

HMM = Hidden Markov Model

PSMC uses a HMM

Some states that change with time

But they're hidden (you can't observe them)

But they're hidden (you can't observe them)

_ _ _ _

But you can observe something connected to them

It's really powerful for dynamic systems and is used a lot in computational biology (annotation, etc)

Observed state

Naming each part of it...

Genetic sequence

How SMC methods work

- It creates 100 bp windows
- 1 for hets, 0 for homs

How does SMC work?

In a whole genome we have...

The SMC is capable of calculating the probability of recombination breakpoints.

Nucleotides stat

tes Recombination I	breakpoints
---------------------	-------------

Since a "tree" between two sequences is known, the only variable that change is T_{MRCA}.

PSMC: Local genealogy is the time to the T_{MRCA} , because only one tree **MSMC:** Uses only some of the local trees, the ones that describe the

T_{MRCA} of two alleles at a locus

What does it look like?

mutation rate to scale the graph.

PSMC plot

PSMC plot

PSMC plot - example 01 What do you see?

PSMC: the weak points

- It's really dependable on proper generation times and mutation rates;
- Sudden drops in population will show as a steady decline over time instead of a sudden bottleneck;
- Population structure will strongly affect the results (as it affects coalescence times);
- Not great with zoo animals;
- Doesn't have a framework for testing hypotheses, must use bootstrap replicates instead.

PSMC: the weak points

Factors that affect the coalescent rates will affect the PSMC too, like natural selection and nonrandom mating.

PSMC vs **MSMC**

- with coalescence events in the recent past;

- It tends to out-perform PSMC even in single genomes;

- Multiple individuals help increase the chance for alleles

- Deep coalescences are relatively rare in all cases.

PSMC and beyond

- eight samples in most cases.
- SMC++ (Terhorst et al. 2017): higher accuracy
- ASMC (Palamara et al. 2018): 2-3x faster
- XSMC (Ki & Terhorst, 2020)
- Gamma-SMC (Schweiger & Durbin, published in Advance August 10, 2023): Up to 20x faster, can detect loci under positive selection.

MSMC2: Expands on MSMC, that's limited to

Reading suggestions

REVIEW ARTICLE

A practical introduction to methods for estimating den data

Niklas Mather | Samuel M. Traves | S

RESOURCE ARTICLE

Limits and convergence pro Markovian coalescent

Thibaut Paul Patrick Sellinger 💿 📔 Diala

MSMC and MSMC2: The Multi Coalescent

Stephan Schiffels and Ke Wang

Ecology and Evolution	WILEY
sequentially Markovian coales	cent
nographic history from genom	nic
imon Y. W. Ho 回	
MOLECULAR ECOLOGY RESOURCES W	ILEY
operties of the sequentially	
· · · · · · · · · · · · · · · · · · ·	
Abu-Awad Aurélien Tellier 💿	
nle Sequentially Markovian	Springer Protocols
	n Y. Dutheil <i>Editor</i>
St Po	tatistical opulation
Ge	enomics
OPEN	₹‰r Humana Press