

NGS: technologies and challenges

Johanna Lagensjö, Project coordinator & Head of laboratory operations, NGI-Uppsala Adam Ameur, Associate professor and senior bioinformatician, NGI-Uppsala

Today we will talk about

- Genomics Platforms and sequencing services at NGI, SciLifeLab
- History and current status of technologies for sequencing
- NGS applications and technologies
- NGS challanges and sample requirements
- Data analysis pipelines, R&D and strategic projects

Service areas of SciLifeLab

Across all service areas: dedicated staff scientists that can offer support **throughout the experimental process** – from study design to data handling

SciLifeLab Genomics

Ancient DNA

We use cleanroom labs and specialized molecular genetics techniques to extract, make libraries, sequence and analyze DNA in ancient and/or degraded biological material.

Clinical Genomics

Develops and provides clinical genetic tests using state-of-the-art genomic methods, such as next-generation sequencing, for translational research and healthcare.

National Bioinformatics Infrastructure (NBIS)

Provides custom-tailored support with analysis of genomics data generated at SciLifeLab or elsewhere, as well as tools and training.

National Genomics Infrastructure (NGI)

Provides services for next generation sequencing and SNP genotyping on all scales using a comprehensive range of modern technology.

Learn More ---->

Learn More ----->

What is National Genomics Infrastructure (NGI)?

NGI provides access to technology for next generation sequencing, genotyping, proteomics with NGS read out and associated bioinformatics support

NGI Platform organisation

NGI 2024

NGI services

Genome Sequencing De novo, re-seq, targeted...

Epigenomics Methylation, chromatin state, HiC...

Transcriptomics Short-read, long-read

Proteomics Olink Explore

Arrays SNPs, methylation

Source material Tissues Cells Microbes Plasma Nucleic acids Archaeological material Environmental samples Read-made libraries

Sequencing instruments at NGI

Short read NGS

High troughput, low cost per base

NovaSeq X Plus Illumina NovaSeq Illumina MiSeq Illumina NextSeq AVITI, Element Biosiences

Long read NGS

Very long reads, lower troughput

PacBio Revio Oxford Nanopore-PromethION

15 years of Illumina sequencing at NGI

2007: Installation of Illumina GA

2023: Arrival of NovaSeq X Plus

Instruments over the years

Sequencer	Launched	Runtime	Output	Cost per Base
Illumina Genome Analyzer (GA)	2006	~3 days	~1 Gb per run	~\$0.10
HiSeq 2000	2010	~10 days	Up to 600 Gb per run	~\$0.01
HiSeq 2500	2012	~1 day in rapid mode	Up to 600 Gb per run	~\$0.01
HiSeq X Ten	2014	~3 days per run	~1.8 Tb per run	<\$0.01
NovaSeq 6000	2017	~13–44 hours	Up to 6 Tb per run	~\$0.005
NovaSeq X / X Plus	2022	~24–48 hours	Up to 20 Tb per run	<\$0.004

Workflow, Illumina sequencing

Quality control of template (DNA, RNA, amplified regions)

Data analysis

Read alignment to a reference DNA-seq: Do we find mutations? RNA-seq: Changes in gene expression? De novo assembly of long reads

Data processing

Raw data files converted to a readable format (fastq-files), demultiplexing

• A conversional library is a pool of DNIA from

- A sequencing library is a pool of DNA fragments with adapters attached to both ends of the fragments
- Approx. 25 protocols for Illumina library prep at NGI

Library preparation

Illumina cluster generation & sequencing

- The sequencing library is hybridized to a flowcell ("cluster generation")
 - A flowcell is a slide that is coated with oligos
- Rapid bridge amplification
- Hybidization of sequencing primers
- Sequencing by syntehsis
 - fluorophore labeled nucleotides emitting light

Illumina sequencing by synthesis

4-C	hann	el Ch	emist	ry	2-C	hann	el Ch	emisti	Ŋ
	•	•	•	•		ø		•	•
	A	G	Ť	ċ		Å	G	Ť	c
Image 1					Image 1				
Image 2		•			10.05755.00	-		-	
Image 3					Image 2				
Image 4				•		-			
Result	Α	G	т	C	Result	Α	G	т	С

NovaX Channel.jpg

Youtube: https://www.youtube.com/ watch?v=fCd6B5HRaZ8

NovaSeq X Plus – new instrument!

Flowcell Type	1.5 B	10 B	25 B
Output per flowcell (paired end150 bp)	500 Gb	3 Tb	8 Tb
Number of human genomes per flowcell	~ 4	~ 24	~ 64
Run time (paired end150 bp)	21 h	24 h	48 h

Run ID - Lane	Mb Total Yield	M Total Clusters	% bases ≥ Q30
20230612_LH00179_0005_A2255M2LT3 - L1	295 764.0	979.4	95.4%
20230612_LH00179_0005_A2255M2LT3 - L2	323 896.8	1 072.5	95.3%
20230612_LH00179_0005_A2255M2LT3 - L3	366 557.1	1 213.8	95.6%
20230612_LH00179_0005_A2255M2LT3 - L4	383 028.6	1 268.3	95.0%
20230612_LH00179_0005_A2255M2LT3 - L5	251 454.3	832.6	97.3%
20230612_LH00179_0005_A2255M2LT3 - L6	284 351.5	941.6	97.1%
20230612_LH00179_0005_A2255M2LT3 - L7	388 065.2	1 285.0	94.0%
20230612_LH00179_0005_A2255M2LT3 - L8	363 776.7	1 204.6	95.0%

Advantages and challenges NovaSeqX

÷

Cost per base is low Quick data generation Easy workflow in the lab

Reagents shipped in RT

On-instrument analysis

Yield vs duplicates

More sensitive to challenging samples and short inserts Sensitive to colour balancing (C-A)

Quality control of RNA/DNA

DNA

RNA

Concentration: QuantIT

<u>Degradation</u>: Fragment Analyzer/TapeStation

Fragment Analyzer/TapeStation

Degraded DNA sample

DNA-sample: 2.5 ng/ul, DIN-value 0

Sample Table

Well	DIN Conc. [ng/µ] Sample Descri		Sample Description	Alert	Observations		
Al	Nar	2.46	SX1162_SLv1		Sample concentration outside functional range for DIN		

20 ng of DNA, Thurplex Low-input library prep, 3 libraries

Amount of data generated: 800 M read pairs (aiming for ≥60x coverage)

Result: 12x coverage

Sopy table	II Plot Sh	iowing ⁷ / ₇ rows a	and ¹⁴ / ₂₃ co	lumns.										
Sample Name	% GC	Ins. size	≥ 30X	Coverage	% Aligned	Change rate	Ts/Tv	M Variants	TiTV ratio (known)	TiTV ratio (novel)	% Dups	% Dups	% GC	M Seqs
S1	46%	55	11.1%	2.0X	98.2%	893	1.645	3.47	2.0	1.6	76.6%			

Quality of sample/library will affect sequencing result!

- RNA samples, RIN-values between 1-9,6
- Library prep Illumina Ligation Ribo-Zero Plus

Results on next page...

Continued...Quality of sample/library will affect sequencing result

QC-reults RNA-seq

Some of the applications offered

Protein analysis, Olink Explore with NGS readout

- Highly multiplex protein biomarker analysis:
 - Olink Explore 384-5300 protein assays available
 - Cardio-metabolic
 - Inflammation
 - Neurology
 - Oncology
- Stats
 - >25 000 samples analyzed 2021-2023
 - >30 000 samples analyzed in 2024

SciLifeLab Explore Lab: NGI in collaboration with the Affinity Proteomics Uppsala unit and Olink Proteomics AB

New instrument – AVITI, Element Biosciences

Category	Specification
Technology	Sequencing by Binding (SBB)
Applications	Genomics, transcriptomics, single-cell sequencing
Read Lengths	Up to 2×150 bp (paired-end reads)
Data Output	Up to 300 Gb per run
Run Time	24-36 hours
Library Compatibility	Standard NGS library preparation protocols
Limitations	Not ideal for ultra-high-throughput projects

Examples, recent successful projects

Massively parallel analysis of single-molecule dynamics on next-generation sequencing chips

\$ 5,195

nature genetics

Explore content 🗸 About the journal 🖌 Publish with us 🗸

nature > nature genetics > comment > article

Comment | Published: 21 October 2024

Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon

Angelica Maria Delgado-Vega [⊠], Helene Cederroth, Fulya Taylan, Katja Ekholm, Marlene Ek, Håkan Thonberg, Anders Jemt, Daniel Nilsson, Jesper Eisfeldt, Kristine Bilgrav Saether, Ida Höijer, Ozlem Akgun-Dogan, Yui Asano, Tahsin Stefan Barakat, Dominyka Batkovskyte, Gareth Baynam, Olaf Bodamer, Wanna Chetruengchai, Pádraic Corcoran, Madeline Couse, Daniel Danis, German Demidov, Eisuke Dohi, Mattias Erhardsson, ... Ann Nordgren [⊠] + Show authors

Nature Genetics 56, 2287–2294 (2024) Cite this article

1768 Accesses | 9 Altmetric | Metrics

NGI OpenLab – opening soon!

New interactive NGS space opening at BMC in Uppsala January 2025

Launch party at BMC Jan 16, 14.00-16.00

Long-read sequencing, data analysis pipelines, and development projects at NGI

Adam Ameur

National Genomics Infrastructure, SciLifeLab, Uppsala, Sweden

Limitations with short reads

• You don't get complete genome information!

Long-read sequencing

No longer a niche technology!

- Assemble <u>complete</u> genomes
- Find <u>all</u> genetic variants
- Detect epigenetic modifications
- At a "reasonable" cost

PacBio Sequencing

PacBio Sequencing

PacBio – Methylation detection

• Base modifications on native DNA molecules can be detected!

A decade of PacBio sequencing at NGI

2023: Arrival of PacBio Revio

The PacBio Revio System

- Up to 90Gb data from one SMRT cell
- Read lengths: 15-20kb
- >QV20 quality (>99% read accuracy)
- Can run 1,300 human genomes/year!

The PacBio Revio System – Update 2025

120Gb

- Up to 906b data from one SMRT cell
- Read lengths: 15-20kb
- >QV20 quality (>99% read accuracy)
- Can run 1,300 human genomes/year!
 2,500 human genomes

Revio – results for our first 16 runs

Sample/Species/Proj	Number of reads	Total yield (Gbp)	Average read length (kb)	Size selection method	Comment
Human 1_1	6,873,030	84.7	12.3	Ampure beads	Also Sequel II data
Human 1_2	6,846,419	102.2	15.0	Ampure beads	Also Sequel II data
Human 1_3	7,170,075	90.3	12.6	Ampure beads	Also Sequel II data
Human 1_4	6,015,366	67.6	11.2	Ampure beads	Also Sequel II data
Human 2_1	6,895,775	104.2	15.1	SageELF (2 fract. pooled)	
Human 2_2	5,684,755	100.3	17.6	SageELF (2 fract. pooled)	
Human 2_3	6,022,465	111.5	18.5	SageELF (2 fract. pooled)	
Human 3_1	7,544,871	72.3	9.6	Ampure beads	
Human 3_2	7,857,802	65.6	8.3	Ampure beads	
Human 3_3	7,164,744	102.3	14.3	Ampure beads	
Human 3_4	6,695,524	82.4	12.3	Ampure beads	
Human 3_5	6,541,509	80.4	12.3	Ampure beads	
Plant 1_1	7,683,014	70.1	9.1	Ampure beads	Also Sequel II data
Amphibian 1_1	2,700,447	23.5	8.7	Ampure beads	225 pM loading
Amphibian 1_1	5,219,472	42.3	8.1	Ampure beads	350 pM loading
Bird 1 1	6,812,139	90.2	13.2	Ampure beads	

Example of a good run > 114 Gb

Value	Analysis Metric	
6.6 M	HiFi reads	HiFi Read Length Distribution m84045_240305_200948_s3
114.17 Gb	HiFi reads yield	560,000 -
17.21 kb	HiFi reads length (mean)	480,000 - පු
16,564	HiFi reads length (median, bp)	0 320,000 -
17,585	HiFi Read Length N50 (bp)	240,000
Q34	HiFi Read Quality (median)	160,000 -
92.36%	Base Quality ≥Q30 (%)	0 10,000 20,000 30,000 40,000
8	HiFi Number of Passes (mean)	HiFi Read Length, bp

Example: Data at a transclocation site

Soft clipped reads, aligning to another chromosome

Oxford Nanopore sequencing

Base modification info is retained

Oxford Nanopore sequencing

Instrument	Run time /FC	Output / FC	Nr of pores	Max read length
Flongle	16 hrs	1 Gb	126	1 Mb
MinION	24 hrs	2-15 Gb	512	1 Mb
GridION	24 hrs	2-15 Gb	512	1 Mb
PromethION	72 hrs	10 – 150 Gb	3 000	2 Mb

ONT - Portability

The International Space Station

In 2016, MinION was used to conduct the first ever DNA sequencing in space. MinION performance was unaffected by the flight to the International Space Station (ISS) or microgravity conditions. The team stated that 'these findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight! Further to this, in 2020, an end-to-end sample-to-sequencer workflow conducted entirely aboard the ISS resulted in off-Earth identification of microbes for the first time.

Entirely off-grid, solar-powered

Photograph: NASA @

Read more >

Uncovering cryptic transmission of Zika virus

The origin and epidemic history of Zika virus (ZIKV) in Brazil and the Americas remained poorly understood despite observed trends in reported microcephaly. Using a mobile genomics lab to conduct genomic surveillance of ZIKV, the team identified the earliest confirmed ZIKV infection in Brazil. Analysis of these genomes estimated that ZIKV is likely to have disseminated from north-east Brazil in 2014, before the first detection in 2015, indicating a period of pre-detection cryptic transmission that would not have been identified without genomic sequencing.

Read more >

In 2019, Gowers et al. used MinION to demonstrate 'the ability to conduct DNA sequencing in remote locations, far from civilised resources (mechanised transport, external power supply, internet connection, etc.), whilst greatly reducing the time from sample collection to data acquisition'. The team transported their portable lab for 11 days using only skis and sledges across Europe's largest ice cap (Vatnajökull, Iceland), before carrying out a tent-based study, resulting in 24 hours of sequencing data using solar power alone.

Read more >

sequencing

ONT - Speed

New DNA Sequencing Tech	nature
January 17, 2022	Explore content \checkmark About the journal \checkmark Publish with us \checkmark
🎔 Tweet 👩 Share 1 📊 Share 🔤 Ema	nature > articles > article
A new ultra-rapid genome sequencing approach collaborators was used to diagnose rare genetic unheard of in standard clinical care.	Article Open access Published: 11 October 2023
"A few weeks is what most clinicians call 'rapid' v results," said Euan Ashley, MB, professor of med	during surgery
Genome sequencing allows scientists to see a p everything from eye color to inherited diseases. rooted in their DNA: Once doctors know the spe	<u>C. Vermeulen, M. Pagès-Gallego, L. Kester, M. E. G. Kranendonk, P. Wesseling, N. Verburg, P. de Witt</u> Hamer, <u>E. J. Kooi, L. Dankmeijer, J. van der Lugt, K. van Baarsen, E. W. Hoving, B. B. J. Tops</u> [⊠] & <u>J. de</u>
Now, a mega-sequencing approach devised by A diagnostics: Their fastest diagnosis was made in less time in critical care units, require fewer test	<u>Ridder</u> <u>Nature</u> 622, 842–849 (2023) <u>Cite this article</u>
A paper describing the researchers' work is pub Burnell Professor in Genomics and Precision He	34k Accesses 563 Altmetric <u>Metrics</u> alth, is the senior author of the paper. Postdoctoral scholar John Gorzynski, DVM, PhD, is the lead author.

-1

ONT target sequencing - adaptive sampling

ONT direct RNA sequencing

ONT can sequence native RNA molecules!

- No bias due to cDNA conversion
- Allows to study RNA modifications
- Higher error rate
- Lower throughput

What people are using long reads for...

Example 1: Detect all genetic variants

Long-read sequencing can detect more genetic variants than with short reads:

Example 2: Assemble complete genomes

It took just **3.5 h** on a **96** core compute node for *de novo* assembly of a human sample!

span (Gbp)	3.1
GC (%)	40.84
AT (%)	59.16
longest contig (Mbp)	159
contig count	373
contig N50 length (Mbp)	56
contig N50 count	17
contig N90 length (Mbp)	10
contig N90 count	59

De novo assembly mapped to GRCh38

Colour change represents adjacent contigs

Chromosomes **11** and **18** were assembled in single contigs

...but GRCh38 is missing ~200Mbp of genetic information...

Red segments resolved by T2T Consortium DOI: 10.1126/science.abp8653

Ignas Bunikis

De novo assembly mapped to T2T

Colour change represents adjacent contigs

Ignas Bunikis

Example 3: Investigate methylation

Obtain methylation patterns, phased with haplotypes (example for imprinted region)

Example 4: Full-length RNA sequencing

• Get complete information about RNA molecules!

Example 5: Single-cell long-read RNA

• It is possible to study RNA isoforms even in single cells!

Resolved with single-cell full-length RNA seq

Challenge: good sample quality required!

https://www.qiagen.com/ja-us/applications/molecular-biology-research/hmw-dna

•}

HMW-DNA Extraction – Options at NGI

Commercial Kits

MONARCH High input quality required Few special protocols

Top choice for high quality samples with low amount of contaminants

NANOBIND

Lower input quality tolerated Many special protocols Suplemental buffers for insects

Top choice for most non-standard samples except for low input and high polysaccharide samples

Phenol/Chloroform

SDS Lysis High polyphenol High recovery for low input

Top choice for samples high in polyphenols without polysaccharides

CTAB Lysis High polysaccharide Also handles polyphenols

Top choice for plants, fungi, and other samples high in polysaccharides

HMW-DNA Extraction – Contaminants

Importance of purity – even for model organisms Impurities can originate from both host tissue and extraction chemicals.

We extract what we get!

Which would you expect to have less contaminants?

NGI Data Handling and Analysis Pipelines

NGI Data Handling

•

Data delivery via DDS

- DDS is a system for delivery of data from SciLifeLab platforms
 - Cloud-based solution
 - Command line and web interface
 - · Can handle also sensitive data

• Instruction video available on Youtube!

٠١٢

Quality control

- Every project has some level of quality control checks
 - Technical run performance
 - Read length distribution
 - Sequencing quality
- Analysis pipelines give application-specific QC
- Reporting done using MultiQC (Illumina projects)

•13

Multi QC example

	-					INFRA	STRUCTURE	
P1234: Test_NGI_Project	D1224-	Foot NG	Projoc	+				and the
Beneral Stats	F1204.	lest_NG	_Flojec	L.				18
IGI-RNAseq	This is an ex	ample project	t. All identify	ing data has l	peen remo	/ed.		1
Bampla Similarity	Contact	E-mail: phil.ewels4	scilifelab.se					A
MDS Plot	Applicatio Sequencing Pl	Application Type: RNA-seq Sequencing Platform: HiSeq 2500 High Output V4						
TAR	Sequencing	Setup: 2x125						^O
Sutadapt	Reference G	enome: hg19						4
fastQC	Report generated on	2017-05-17, 18:43 ba	sed on data in:					М
Sequence Quality Histograms	/Users/philewels/	GITHUD/MultiQC_web	site/public_ntml/	(examples/ngl-rna/d	ata			0
Per Sequence Quality Scores	I≣ NGI names	User supplied name						0
Per Base Sequence Content	A CONTRACTOR							
Per Sequence GC Content								
Per Base N Content	General S	tatistics						
Sequence Length Distribution	A Constability III of							
	A CODY 10010 100 C	ionfigure Columns	Plot Showing 22/22	rows and ⁶ / ₉ columns.				
Sequence Duplication Levels	Sample Name	onfigure Columns II	Plot Showing ³² / ₂₂ (M Aligned	rows and ⁶ / ₀ columns. % Trimmed	% Dups	% GC	M Seqs	
Sequence Duplication Levels Dvemopresented sequences	Sample Name	68.25%	Plot Showing ³² / ₂₂ a M Aligned 22.8	rows and ⁶ / ₀ columns. % Trimmed 10.3%	% Dups	% GC	M Seqs 33.7	
Stiguence Duplication Levels Dvamprosential sequences Adapter Centent	Sample Name P1234_1001 P1234_1002	68.256 67.9%	Plot Showing ²² / ₂₂ 4 M Aligned 22.8 20.9	rows and % columns. % Trimmed 10.3% 10.7%	% Dups 71.3% 70.1%	% GC 49% 50%	M Seqs 33.7 31.1	
Sequence Duplication Levels Dverrepresented sequences Adapter Centent	Al Copy table in C Sample Name P1234_1001 P1234_1002 P1234_1003	667.9%	Piot Showing 32/221 M Aligned 22.8 20.9 21.7	rows and % columns. % Trimmed 10.3% 10.7% 11.0%	% Dups 71.3% 70.1% 72.3%	% GC 49% 50% 50%	M Seqs 33.7 31.1 33.7	
Sequence Duplication Lavels Dvemprosented sequences Adapter Centant	a Gey table 18 G Sample Name P1234_1001 P1234_1002 P1234_1003 P1234_1004	68.2% 67.9% 67.9% 67.9% 64.7%	Piot Showing 32/221 M Aligned 22.8 20.9 21.7 17.0	rows and % columns. % Trimmed 10.3% 10.7% 11.0% 13.2%	% Dups 71.3% 70.1% 72.3% 72.4%	% GC 49% 50% 50%	M Seqs 33.7 31.1 33.7 31.2	
Sequence Duplication Lavails Dvansprosentied sequences Adapter Content	a Gey table in C Sample Name P1234_1001 P1234_1002 P1234_1003 P1234_1004 P1234_1005	Aligned Aligned 68.25% 67.9% 64.79% 55.2% 53.0% 53.0%	Piot Showing 32/gs:1 M Aligned 22.8 20.9 21.7 17.0 17.7	rows and % columns. % Trimmed 10.3% 10.7% 11.0% 13.2% 15.0%	% Dups 71.3% 70.1% 72.3% 73.4% 75.8%	% GC 49% 50% 50% 51% 52%	M Seqs 33.7 31.1 33.7 31.2 33.8	
Sequence Duplication Levels Dverrepresented sequences Adapter Content	A Copy table in C Sample Name P1234_1001 P1234_1002 P1234_1003 P1234_1004 P1234_1005 P1234_1006	Aligned Aligned % Aligned 68,25% 67,9% 64,79% 65,25% 53,05% 58,25% 53,05% 58,25% 52,75%	Piot Showing 32/gs1 M Aligned 22.8 20.9 21.7 17.0 17.7 16.1 16.1	rows and % columns. % Trimmed 10.3% 10.7% 11.0% 13.2% 15.9% 14.1%	% Dups 71.3% 70.1% 72.3% 73.4% 75.8% 73.8%	% GC 49% 50% 50% 51% 52% 52%	M Seqs 33.7 31.1 33.7 31.2 33.8 30.8	
Sequence Duplication Levels Dverrepresented sequences Adapter Centent	a Conytable 18 C Sample Name P1234_1001 P1234_1002 P1234_1003 P1234_1004 P1234_1005 P1234_1006 P1234_1007	Aligned Aligned % Aligned 68.25% 67.39% 64.79% 55.25% 53.09% 58.79% 53.09% 58.79% 33.0%	Piot Showing 22/221 M Aligned 22.8 20.9 21.7 17.0 16.1 7.0	rows and % columns. % Trimmed 10.3% 10.7% 11.0% 13.2% 15.9% 14.1% 32.0%	% Dups 71.3% 70.1% 72.3% 73.4% 75.8% 73.8% 60.5%	% GC 49% 50% 50% 51% 52% 52%	M Seqs 33.7 31.1 33.7 31.2 33.8 30.8 21.8	
Sequence Duplication Lavats Overrepresented sequences Adapter Centent	a Conytable 18 C Sample Name P1234_1001 P1234_1002 P1234_1003 P1234_1004 P1234_1005 P1234_1005 P1234_1006 P1234_1007 P1234_1006	Aligned Aligned 68.25% 67.9% 67.9% 55.25% 53.0% 58.7% 33.0% 27.5%	Piot Showing 32/gg 1 M Aligned 22.8 20.9 21.7 17.8 17.8 16.1 7.0 4.3 3	rows and % columns. % Trimmed 10.3% 10.7% 11.0% 13.2% 15.9% 14.1% 32.0% 44.2%	% Dups 71.3% 70.1% 70.3% 72.3% 72.3% 73.4% 75.8% 60.5% 79.1%	% GC 49% 50% 50% 51% 52% 52% 52% 52%	M Seqs 33.7 31.1 33.7 31.2 33.8 30.8 21.0 16.7	

٠١٢

Analysis pipelines

- NGI provides data analysis for most applications
- Analysis requirements: Automated, reliable, easy to run, reproducible

Get started

nf-core: a popular pipeline system

- A community effort to collect a curated set of Nextflow analysis pipelines
- GitHub organisation to collect pipelines in one place
- No institute-specific branding
- Strict set of guideline requirements

nature biotechnology

Correspondence | Published: 13 February 2020

The nf-core framework for community-curated bioinformatics pipelines

Philip A. Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen ⊡

Available pipelines at NGI

• All information available on our website: <u>https://ngisweden.scilifelab.se</u>

Amplicon-seq analysis	0	Y	ATAC-seq analysis
Methylation-seq analysis		0	ChIP-seq analysis
Genome assemblies with HiFi data		ion	Ion Torrent secondary analysis
Nanopore analysis	Ø	PocEle	PacBio Iso-Seq Analysis
PromethION secondary analysis	0	illumina	Illumina QC analysis
RAD-seq analysis	8	×	RNA-fusion analysis
RNA-seq analysis	1	₿	Small-RNA analysis
Spatial Transcriptomics analysis	181		WGS and WES germline / somatic analysis

WES and WGS analysis

٠١٢

WGS and WES germline / somatic analysis

Runs with illumina DNA-sequencing data, WGS or targeted sequencing e.g. WES. Aligns to the reference genome, gives QC metrics, does variant-calling and finishes with annotation.

nf-core/sarek (paper) is an analysis pipeline for WGS and targeted sequencing data e.g WES. Previously known as the Cancer Analysis Workflow (CAW), Sarek can handle regular samples or tumour/normal pairs, including relapse samples if required. Sarek was co-developed by NGI.

Sarek analysis can be divided into two different use cases: germline analysis and somatic analysis. These two use cases share the same main steps: mapping, variant calling and annotation.

When we run analysis

We routinely run Sarek germline analysis upon request for human WGS and WES projects. For the Sarek somatic analysis, the decision to run the analysis is made on a case by case basis. If you're interested, please get in touch with us and mention that you would like us to run this analysis.

The analysis currently works with the human reference genomes available in AWS-IGenomes (GRCh37/GRCh38). If in doubt, please ask whether we can run the pipeline for you.

Input data

Sarek can start from the unprocessed demultiplexed FastQ files from the sequencer together with a small bit of contextual data in the form of a TSV-file. For each sample, the TSV-file should denote the sex of the subject and whether the sample is tumour or normal. In most cases, this information needs to be submitted to NGI by the user.

Results

The pipeline generates BAM alignment files and variant-calling VCF files, along with numerous quality control metrics. For more information, please see the official documentation.

Available pipelines at NGI

٠١٢

Example: RNA-seq analysis

RNA-seq analysis

Runs with illumina total RNA-sequencing data. Aligns to the reference genome, gives QC metrics and finishes with gene count matrices.

RNA-Seq is a bioinformatics analysis pipeline used for RNA sequencing data. The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It processes raw data from FastQ inputs, aligns the reads, generates counts relative to genes or transcripts and performs extensive quality control on the results.

When we run analysis

We run this analysis routinely for all RNA-seq projects where we have prepared the sequencing library in-house. If you have prepared a library yourself and we are just sequencing, please get in touch and mention that you would like us to run this analysis.

The analysis works with any of the species that have a reference genome available in AWS-iGenomes. If in doubt, please ask whether we can run the pipeline for you.

Input data

bcl2fastq demultiplexed FastQ files and a genome reference.

Results

The pipeline generates aligned BAM-files, gene count matrices and FPKM metrics for genes and transcripts, along with numerous quality control metrics. For more information, please see https://nfco.re/maseq/[release]/docs/output

Last Updated: 18th October 2023

Available pipelines at NGI

ChIP-seq analysis

٠١٢

ChIP-seq analysis

Runs with ChIP sequencing data, Pre-processes raw data from FastQ inputs, aligns the reads and performs peak calling and extensive quality-control on the results.

ChIP-Seq is a bioinformatics best-practice analysis pipeline used for chromatin immunoprecipitation (ChIP-seq) data analysis. The pipeline uses Nextflow, a bioinformatics workflow tool. It pre-processes raw data from FastQ inputs, aligns the reads and performs peak calling and extensive quality-control on the results.

When we run analysis

We run this analysis routinely for all ChIP-seq projects where we have prepared the sequencing library in-house. If you have prepared a library yourself and we are just sequencing, please get in touch and mention that you would like us to run this analysis.

The analysis works with any of the species that have a reference genome available in AWS-iGenomes. If in doubt, please ask whether we can run the pipeline for you.

Input data

bcl2fastq demultiplexed FastQ files and a genome reference.

Results

The pipeline generates aligned BAM-files, files with information about called peaks, along with numerous quality control metrics. For more information, please see https://nf-co.re/chipseq/docs/output.

Last Updated: 14th July 2023

Available pipelines at NGI

Genome assembly with HiFi data

Genome assemblies with HiFi data

NGI can generate high quality assemblies using IPA and hifiasm assemblers

Improved Phased Assembler (IPA) is the official PacBio software for HIFI genome assembly. IPA was designed to utilize the accuracy of PacBio HiFI reads to produce high-quality phased genome assemblies.

Hiffiasm is a fast haplotype-resolved de novo assembler for PacBio HiFi reads. It emits partially phased assemblies of quality competitive with the best assemblers. Given parental short reads or Hi-C data, it produces arguably the best haplotype-resolved assemblies so far.

Image: Nat Methods 18, 170-175 (2021). https://doi.org/10.1038/s41592-020-01056-5

Not yet implemented as a nf-core pipeline!

Trend: On-instrument analysis

More and more analyses being done on instrument GPUs

Illumina NovaSeqX

Mapping and variant calling (Dragen)

PacBio Revio

Onboard generation of HiFi reads

→ Can speed up and streamline the analysis process...
You can also get help from NBIS!

• All solutions are not available from NGI, but NBIS has lots of experts!

Some tips for data analysis...

Think about analysis early on – already when planning the project!

- Which tools should be used?
- Can I run the analysis myself, or do I need assistance?
- Where should the analysis be run?
- Do I have enough storage space?
- Where should the data eventually be archived?

NGI strategic projects and collaborations

We are involved in some larger national and international projects...

Biodiversity genomics

Reference genomes of any organism - a very challenging endeavour

Large genomes (18-22Gb)

Tiny organisms Tiny organisms with large genomes

And many, many, ..., many other uncooperative organisms

Reference genome sequencing

NGI & NBIS can help out with:

- DNA/RNA extractions
- Long-read sequencing
- Hi-C Illumina sequencing
- RNA sequencing
- De novo assembly
- Genome annotation

https://www.vecteezy.com

Human genome analysis

-17

Photo: SVT

Swedish WGS reference dataset

2017: 1,000 genomes sequenced on Illumina

SweGen

Ameur et al, Eur. J. Hum. Genet. 2017

2024: Time to do it again, with long reads!

How to build a long-read reference dataset?

• Planning started 2023, with a wishlist for a new Swedish population cohort

	Description	Priority
Consent for data sharing	It must be possible to share individual-level variant information (VCF files) on national level and ideally also internationally	Crucial
Amount and quality of DNA	At least 5ug of high-quality DNA per individual, ideally from fresh samples extracted for long-read sequencing	Crucial
Phenotype information	Detailed phenotype information available, that can be used for specific research projects (after approval)	Important
A cross-section of Sweden	The individuals should not be enriched for a specific disease or phenotype, and reflect the genetic variation in Sweden (ideally including ethnic minorities)	Important
Additional OMICS data	Possibility to perform other OMICs studies (RNA, protein, etc) on samples from the same individuals	Important
Available SNP array data	Data from SNP arrays, that can be used to infer the genetic background and select representative individuals for sequencing	Beneficial
Funding and resources	Possibility to get additional local funding and resources (for re- consent, sample collection, DNA extraction, etc.)	Beneficial

How to get funding for sequencing?

"Genome of Europe" - A 40M Euro project within the 1+Million Genomes Initiative!

The Genome of Europe

Aim: Construct a european reference WGS dataset

Sweden's representatives - Adam Ameur, Anna Lindstrand, Bengt Persson, Anna Hagwall

- 100,000 individuals, from 27 countries
- Representative of Europe's population
- International data sharing possible
- Swedens contribution: <u>2,600 WGS</u>

What is the best sample collection for GoE?

- SCAPIS: A prospective population study for heart- and lung disease
- Over 30,000 participants, collected at 6 sites (from Lund to Umeå)
- We are planning to analyze at least 1000 individuals

Collaborations on Rare Disease

We are collaborating with Genomic Medicine Sweden - Rare Disease Group

Long-Read Whole Genome Sequencing

- Improve diagnostics of rare disease patients
- Resolve complex SVs and other variants
- PacBio Revio and ONT PromethION

Long-Read Targeted Sequencing

- Develop clinical assays for repeat expansions
- Cas9-based capture or adaptive sampling
- Aim: implementation at different hospital nodes

How to analyze human long-read data?

Nallo: a Nextflow analysis pipeline for patients and controls

Felix Lenner, et al

Thanks for your attention!

•