BASH cheat sheet - Level 3

Conditional statements
A) The if statement:

if [[condition1]];then / '\ The spaces are

command1 important in that syntax
elif [[conditionZ2]];then

command2
else

command3

fi

Perform command]1 if conditionl1 is true, elseif the
conditionZ is true the command? is performed, else it’s the
command3 that will be performed.

File tests:
-ffile True if file file exists
-d dir True if dir dir exists
-Z string True if string is empty.
-n string True if string is non-empty.

file1 -nt file2
True if file1 has been changed more recently
than file2, or if file1 exists and file2 does not.
filel -ot file2
True if file1 is older than file2, or if file2 exits and
file1 does not.

String comparison operators:

string1 == string2
string1 '= string2

Compare strings equality.
Compare strings inequality.

Arithmetic comparison operators:

Generally numeric comparisons on double square
brackets are obsolete, however you may still used -eq, -
ne, -It, -le, -gt, or -ge, meaning equal, not equal, less
than, less than or equal, greater than, and greater than
or equal, respectively.

/ !\ For arithmetic values it’s highly recommended to
use the syntax ((condition)). In that case, the
following operators must be used : ==,z <, <=5
>,>=

Pattern matching operator:

string =~ regularExpression
True if string match the pattern of the regular
expresion.

Logical operators :

if ! [[condition 1]
! - NOT - Negate the truth. Evaluate as true only
if condition is false.

if [[condition1]] && [[conditionZ2 1]
&& - AND - Check if both conditions are true.

if [[condition1 1] || [[conditionZ2 1]
|| - OR - Check if one of the conditions is true.

B) The case statement:

case $variable in
pattern1)
commands1

pattern2|pattern3|pattern4)
commands2

”

patternN)
commands3
»

)
commands4
»

esac
It allows to check a value multiple times. If the $variable

match the patternl, the commands1 are executed. If it
matches none of them, the commands4 are executed.

Jacques Dainat - 2015

The loops

A) The forloop:

for i in element1 element2 element3 ; do
command
done
Repeat the command by assigning list’s
elements to the variable i. The list can be
implicit (e.g *.txt that iterates over all the txt
files.)

for ((i=1;i<=10;i++)); do
command
done
This is a C-style for loop that iterates over the
integers (here from 1 to 10 namely 10 times).

foriin {1..10}; do
command
done
This syntax allows to iterate a selected number
of time (here from 1 to 10 namely 10 times).

for i in ${'array[@]}; do

echo "key :" $i
echo "value:" ${array[$i]}
done

Iterate over an associative array.

B) The while loop:
The while loop continue until the condition is false.

i=0
while (($i <= 10)); do
command
((i++))
done
Iterate until $i is superior to 10, namely 10
times.

for line in $(cat file.txt); do
command

done
Read the file file line by line and execute the
command. / !\ Here the line is defined by the
IFS variable (see section’s end). Set it to "\n'
to obtain the behavior expected.

while read line ;do Read the file file

command line by line and
done < file execute the command.
IFS=$"\n' Set the Internal Field Separator (IFS)

variable to "\n'". By default its value is ' \t\n'
(space, tab and newline).

Arrays and Hashes

A) Indexed array :

array=() or declare -a array
Declare an indexed array and initialize it to
be empty. In the second case an existing
array is not initialized.

array=(Anna Par Ulla)
The array array is initialized with three values.

array[N]=value
Set the element N of the array array to value

array+=(valuel value2 value3)
Append the array with three values.

${array[N]}

Expand the element referenced by the index
N from array.

${#array[N]}

Size (string length) of the value referenced
by the index N in array

${#array[@]}
Size (number of elements) of array.

${'array[@]}
Expand each array index key as a separate
argument.

${array[@]}

Expand all the values stored in array.

unset -v array[N]
Destroy the array element at index N.

unset -v array
Destroy the complete array.

B) Associative array / !\ From Bash 4 / !\:

declare -A array
Declare an associative array array.

array =([string1]=valuel [string2]=value2)
Assign two values in an associative array.
You must declare the associative array first.

Omitting the append command (+=), all other
commands are similar to those of indexed array.
Except that the index key is no more a numerical
value N but a STRING.

Programming in bash

#!/bin/bash
Written at the top of your script, it allows to define
the shell to use. Option can be added as -x for debbug.

sleep 60 Suspend execution for an interval of 60 seconds.

exit Quit the program.

./script.sh Execute the script script (The file’s
executing right is needed).

comment This is a comment.

Jacques Dainat - 2015

A) Arguments

./script.sh arg1 arg2

With that command, the script receive values
script.sh in $0, arg1 in $1, arg2 in $2.

The number of arguments.

Array of arguments.

$#
$@

B) Functions

/ !\ A function must be defined before to call it.

function hello {

command

}
Definition of a function called hello. The command will
be performed when the function is called.

hello arg1 arg2
Call the function named hello with 2

arguments.

/ '\ Within functions, arguments are treated in the same
manner as arguments given to a script.

C) User interface

read variable
Wait for an user input and save the it in variable.

options="opt1 opt2"
select opt in $options; do
if ["$opt" = "opt1"]; then

commandl1

elif ["$opt" = "opt2"]; then
command2

else
command3

fi

done
This is a text based user-friendly menu. It

prompts the user for each ‘opt’ in $options.

