

Deep Learning for Life Sciences: Bayesian Deep Learning

Nikolay Oskolkov, NBIS SciLifeLab 11.12.2020

Chellenges of Applying Deep Learning

SciLifeLab

- Apply to real Life Science projects (NGS: tabular data)
- Apply only if Deep Learning better than simpler methods

Why don't neural networks always work?

Statistics vs. Machine Learning

u are viewing Fredrik Strand's screen View Options

SciLifeLab

Rodriguez et al compared AI with 101 radiologists – AI was as good as radiologists

Why do you compare AI against radiologists? You should compare it against simpler models

Deep Learning is not The Only Tool

Bayesianism

P >> N

Frequentism

P ~ N

Deep Learning

P << N

Deep Learning is a yet another tool

Amount of Data

Comparison is important: If you do not compare, your neural network is the best

Various Types of Data

Tabular

STALLS POTTON -	pumo due sre	4						-		-		-	-											-			-10
Ere Edit Wo	idows <u>H</u> elp		lar		Dan Taki				-			_				_	_	_	_	_	_		_			_	_
Galadiad		WindrosePlo	Windose	Table	Cera Tabl	e Data	ine	Plut DataPa	isePlot 0	ata Rose Tab	•																
Date	_		4FRM00					Seculta	Fricken	Conv Vel	Vet Ret	Conv	Mach	Monin	Series			wind.	Wind.	Med		Terro		Precip	Relative	Station	Cloud
Date Banne	i.		Missing	Υr	Mon Day	Day.	Hr	Heat Flux	Velocity	Scale	Temp. Grad.	Mx Hgt.	Mix, Hgt.	Obukov	Flough.	Eato	Albedo	Speed	Dir.	Flet Higt	COS.	Ref.Hgt.	Code	Rate	Humidity	Pressure	Cover
Period	Mondad		Total			UNIT I		(nim'2)	(11/2)	(m/s)	(%m)	(m)	(n)	Lng. (m)	(m)	1.800		(mh)	(deg)	(11)	110	0m0	Cone	(mmhr)	(%)	(mb)	(tenths)
Stat Date	5/5/2008	Mainum	0	- 8	1	1 1	1	-64.0	0.029	0.012	0.005	3	11	-8888.0	0.004	0.70	0.16	0.00	0	10.0	262.0	2.0	0	0.00	11	988	
End Date		Maximum	937	8	12 3	1 366	24	235.8	1,208	2.537	0.025	2647	3039	8888.0	0.094	0.76	1.00	15.66	360	12.0	310.4	2.0	22	41.70	56	1540	1
Dest block		Masing	907			>	0	0	0	0	0	0	0	0	0	0		0	24	- 0		0	0	0	0	0	
End Mary	34	1	0	2	1	1 1		-6.6	0.075	-9.000	-9.000	-222	43	6.0	0.020	0.76	1.00	2.36	211	10.0	276.4	2.0	0	0.00	64	1019	
Data	1.4	2	Ó	8	1	1 1	- 2	-25.5	0.218	-9.000	-9.000	-999	235	37.1	0.082	0.76	1.00	3.96	118	12.0	274.9	2.0	0	0.00	72	1019	
ELGANOVOR SEC.		3	0	- 8	1	5 1	3	-16.7	0,144	-9.000	-9.000	-999	127	15.2	0.078	0.76	1.00	2.85	124	12.0	275.9	2.0	0	0.00	69	1019	
Canable lifest D	9	4	0	8	1		4	-5.4	0.073	-9.000	-9.000	-222	47	6.6	0.082	0.76	1.00	1.76	123	12.0	275.4	2.0	0	0.00	63	1018	
Entrine Valority	R	5	0	8	1	1 1	5	-28.5	0.279	-9.000	-9.000	-999	339	69.4	0.082	0.76	1.00	3.86	113	12.0	274.9	2.0	0	0.00	75	1017	
Conv Mel Scal	9	6	0		1	1 1	6	-51.4	0.510	-9.000	-9.000	-999	\$37	232.9	0.078	0.76	1.00	6.45	132	12.0	277.0	2.0	0	0.00	69	1015	
Vist Ent Terro	R	7	0	8	1	1 1	7	-46.8	0.466	-9.000	-9.000	-999	734	195.9	0.075	0.76	1.00	5.96	145	12.0	278.1	2.0	0	0.00	70	1013	
Come Mr. Had		8	0	8	1	1 1	8	-39.6	0.698	-9.000	-9.000	-999	1342	775.1	0.084	0.76	0.71	8.45	153	12.0	279.9	2.0	0	0.00	72	1011	
Mark He Mat	17	2	0		1		2	-20.7	0.025	-9,000	-9.000	-222	1720	2442.5	0.075	0.76	0.39	10.06	147	12.0	200.4	2.0	0	0.00	70	1002	
Maria Okology	17	10	0	- 8	1 .		10	53	0.709	0.151	0.005	23	1390	-6052.4	0.084	0.76	0.27	8.46	151	12.0	279.9	2.0	0	0.00	78	1008	
Adam Doub		11	0	2	1		11	12.4	0.633	0.265	0.005	43	1167	-1505.1	0.088	0.76	0.22	7.45	124	10.0	200.6	2.0	11	2.00	82	1008	
Sunace Hough	G	12	0	8	1 .		12	16.0	0.257	0.299	0.005	50	477	-25.3	0.088	0.76	0.21	2.85	186	12.0	200.5	2.0	11	1.50	55	1006	
BUWEI PAU		13	0	2	1	5 1	12	55.4	0.412	0.544	0.005	104	608	-113.1	0.009	0.76	0.21	6.96	263	12.0	292.5	20	0	0.00	73	1005	
Abedo Ward Frank Inch	17	14	0		1		14	12.5	0.305	0.340	0.005	112	551	-411.3	0.004	0.76	0.22	7.45	279	12.0	202.0	2.0	0	0.00	57	1005	
West Dr. (dea)		15	0	- 8	1		15	17.9	0.337	0.396	0.005	124	452	-191.7	0.004	0.76	0.27	6.46	292	72.0	281.4	2.0	0	0.00	55	1004	
wind Dir, (deg)	17	16	0	8	1		16	41	0.383	0.254	0.005	142	544	-1212.3	0.004	0.76	0.29	7.46	294	12.0	281.6	20	0	0.00	45	1004	
Trans (20)	17	17	0	8	1			-44.0	0.447	-9.000	-9.000	-222	655	182.2	0.004	0.76	0.73	2.05	281	72.0	280.5	2.0	0	0.00	22	1005	
Temp. (Po		18	0	2	1 .		18	-27.7	0.412	-9.000	-9.000	.999	610	226.5	0.009	0.76	1.00	7.48	257	12.0	279.9	20	0	0.00	39	1005	
Temp. net rigt	17	19	0		1		12	-24.2	0.445	-9,000	-9.000	-222	654	221.0	0.004	0.76	1.00	8.95	276	10.0	279.2	2.0	0	0.00	20	1005	
Prece Coor		20	0		1		- 20	34.2	0.506	.9 000	.9 000	.449	827	339.7	0.009	0.76	1.00	9.05	267	15.0	278.8	20	0	0.00	42	1005	
Precip. roles (m	17	21	0	8	1		21	-27.3	0.480	-9 000	-9.000	-999	766	363.3	0.004	0.76	1.00	9.55	270	12.0	278.1	20	0	0.00	64	1005	
nelayve numae	10	22	0		1		22	.34.4	0.445	.5 000	.9 000	.699	615	230.0	0.004	0.76	1.00	8.96	272	15.0	278.1	20	0	0.00	44	1005	
Station Pressure	N	23	0	8	1		23	.36.3	0.535	.9 000	.9 000	.999	299	328.2	0.009	0.76	1.00	9.56	260	12.0	277.5	20	0	0.00	46	1004	
Cloud Cover pe	N.	24	0		1	1	24	.57.6	0.529	.9.000	-9.000	.999	004	229.7	0.009	0.76	1.00	9.50	260	12.0	277.0	20		0.00	40	1004	
Table / ppearance		15	0	- 1	1 3	2 2		47.3	0.434	.9.000	.9 000	.999	664	154.3	0.009	0.76	1.00	7.96	266	12.0	278.4	20	0	0.00	50	1004	
Maangulaa	- Ugres	26	0	8	1	2 2	2	-472	0.413	-9.000	-9.000	-999	610	123.3	0.004	0.76	1.00	8.46	272	12.0	276.4	20	0	0.00	52	1004	
DBCKTOIOL	White	27	0		1	2 2	- 1	.22.7	0.195	-9.000	.9 000	.599	676	245.8	0.004	0.76	1.00	7.95	272	12.0	276.0	20		0.00	53	1004	
Porecalor	Bank I	28	0		1	2 2	4	.335	0.334	.9 000	.9 000	.999	446	99.8	0.004	0.76	1.00	6.96	290	12.0	275.9	20	0	0.00	56	1004	
Port	recrosoft 5	29	0	8	1	2 2	5	-29.0	0.507	-9.000	-9.000	-999	830	401.5	0.006	0.76	1.00	3.55	305	10.0	275.5	20	0	0.00	51	1004	
		10	0	- 3	1	2 2	- 6	.30.8	0.534	.9 000	.9 000	.444	297	444.3	0.006	0.76	1.00	10.06	317	12.0	274 9	20	0	0.00	51	1005	
		11	0	0	4	2		-10.1	0.500	.000	-9.000	.000	1021	291.7	0.000	0.76	1.00	11.00	210	12.0	273.0	20		0.00	51	1000	
		12	0		1	2 2		-21.0	0.163	.9.000	-9.000	.999	545	204.5	0.005	0.76	0.71	6.90	126	12.0	273.1	20		0.00	-	1007	
		11	0	- 1	1	2	- 6	-14.1	0.484	.9.000	-9.000	.999	774	720.5	0.006	0.76	0.39	9.05	120	12.0	272 5	20	0	0.00	53	1008	
		14	0		1	2	10		0.640	0.252	0.006	120	672	-1719.1	0.007	0.76	0.22	7.96	221	12.0	272.5	20		0.00	51	1000	
		15	0		1	2 2		307	0.411	0.204	0.005	416	607	-203.3	0.005	0.76	0.22	7.45	125	12.0	272.5	20		0.00	53	1009	
		16	0		4	1	12	27.6	0.504	0.957	0.006	602	929	.311.0	0.007	0.76	0.21	9.00	221	11.0	272.5	20		0.00	16	1010	
		17	0	0	1 1	2 2	11	54.3	0.468	1.002	0.006	603	717	-311.2	0.000	0.76	0.21	0.00	119	11.0	273.3	20		0.00	47	1010	
		14	6	- 1	1 1	1	14	65.0	0.611	1 154	0.004	749	938	186.0	0.007	4.76	0.22	9.00	117	15.0	272.8	20		0.00	12	1241	
		30	0	0	1 1	2	15	17.2	0.612	0.712	0.005	740	1000	-100.0	0.007	0.70	0.22	11.06	337	12.0	273.0	20		0.00	41	1017	
			0			-	- 12	11.4	2,612	0.750	0.009	194	1000		4.007	4.10	0.27	-1.49	340	14.4		2.0		0.00		rend	

Sound

DATA

Image

Time Series

Text

Editing Wikipedia articles on

Medicine

time as a class assignment. This guide is designed to assist students toko have been assigned to contribute biomedical related content to Wikipedia, Here's ohat other editors will expect you to

Be accurate

You're editing a resource millions of people use to make medical cisions, so it's vitally important to be accurate. Wikipedia is used more for medical information than the websites for WebMD, NIH, and the WHO. But with great power comes great responsibility

Understand the guidelines

Wikipedia editors in the medicine area have developed additional guidelines to ensure that the content on Wikipedia is medically sound. Take extra time to read and understand these guidelines. When you edit an article, ensure your changes meet these special requirements. If not, your work is likely to be undone by other editors as they clean up after you. That takes valuable volunteer time away from creating content. If you're not comfortable working under these guidelines, talk to your instructor about an alternative off-wiki

Wiki Edu

Engage with editors Part of the Wikipedia experience is receiving and responding to feedback from other editors Do not submit your content on the last day, then leave Wikipedia! Real human volunteer from the Wikipedia community will likely read and respond to it, and it would be polite for you to acknowledge the time they voluntee to polish your work! Everything submitted

to Wikipedia is reviewed by multiple, real humans! You may not get a comment, but if you do, please acknowledge it.

Watch out for close paraphrasing

Plagiarizing or close paraphrasing is never okay on Wikipedia and is a violation of your university's academic honor code. It's even worse on Wikipedia, as valuable volunteer time that could be used to create good content is instead used to clean up plagiarized work.

If you plagiarize or too closely paraphrase on Wikipedia, it is extremely likely that you'll be caught by other editors and there will be an online record of your plagiarism tied to your permanent online record.

Note that even educational materials from organizations like the WHO and abstracts of articles in PubMed are under copyright and cannot be copied. Write them in your own words whenever possible. If you aren't clear on what close paraphrasing is, visit your university's writing center.

Scared? Don't be!

Everybody on Wikipedia wants to make the pest encyclopedia they can. Take the time to understand the rules, and soon you'll be ontributing to a valuable resource you us a daily basis!

Video

NBES Do we have Big Data in Life Sciences? SciLifeLab

Growth of DNA Sequencing

Possible Big Data in Life Sciences:

- Microscopy Imaging
- Single Cell Omics
- Metagenomics (possibly)
- Genomics (sequence is an observation)

I have Big Data, I want to run Deep Learning on my Big Data

I have 500 TB of data on my disk, this is big.

Deep Learning on Microscopy Imaging SciLifeLab

10

 \bigcirc

3

 (\mathbf{C})

(2°)

1

3

(1)

Deep Learning for Single Cell

NBZS

Deep Learning for Data Integration

Deep Learning for Metagenomics

SciLifeLab

tSNE: Tissue Effect

Epoch

Deep Learning on Ancient DNA (aDNA) SciLifeLab

0.01

0.00

Epoch

ŤĠŤĂŤĠĊĂŤĂŤŤĂ

Bases

Deep Learning for Epidemiology

2.2 mln data points from 200 k individuals

NRð

Deep Learning is not Good Enough

Intelligence is to know how much you do not know

SciLifeLab

Magnitude of Earthquake

Frequentist Statistics Failure

Why Frequentist Statistics is Brain Damaging

Pvalue is not good for ranking features

COMMENT - 20 MARCH 2019

Scientists rise up against statistical significance

Valentin Amrhein, Sander Greenland, Blake McShane and more than 800 signatories call for an end to hyped claims and the dismissal of possibly crucial effects.

Valente Anchelo . Lander Greenland & Halo Withone

y f 🖴

FC <- 1.02 x_mean <- 5; x_sd <- 1 N_vector<-seq(from=100,to=10000,by=100) x1 <- rnorm(N_vector, x_mean, x_sd) x2 <- rnorm(N_vector, x_mean*FC, x_sd)</pre>

What is Bayesian Deep Learning?

0.8

3.1

How Deep Learning Does Fitting

true distribution

Monte Carlo

variational distribution

Bayesian Deep Learning Superior for predictions on unseen data

NB§S

Uncertainties are crucial for Clinical Diagnostics

Frequentist Image Recognition

<pre>X_train = X_train / 255.0 X_test = X_test / 255.0</pre>	train.s st.shap	hape[0], 1, 28, e[0], 1, 28, 28	28).astype('flo .astype('float3	at32') 2')						
: # one hot encode outputs y_train = np_utlis_to_categorical(y_train) y_test = np_utlis_to_categorical(y_test) numc_classes = y_test.hhpe[1] print(num_classes)										
10										
<pre>: # Create the nodel model = Seguration (3, 3), model.add(Conv2bal2, (3, 3), model.add(Conv2b(2, 3, 3), model.add(Conv2b(2, 3, 3), model.add(Conv2b(2, 3, 3), model.add(Conv2b(2, 3, 3), model.add(Conv2b(2, 3), model.ad</pre>	input_ traint= paddin traint= size=(2 ion='re activa =0.9, d	<pre>shape=(1, 28, 24 maxnorm(3))) g='same', active maxnorm(3))) , 2))) lu', kernel_come tion='softmax')) ecay=decay, nest</pre>	<pre>), padding='sam ition='relu', itraint=maxnorm(</pre>	e', activation='relu', 3)))						
<pre>sgu = sup(r=trate, momentum model.compile(loss='categorio print(model.summary())</pre>	cal_cro	ssentropy', opti	mizer=sgd, metr	ics=['accuracy'])						
<pre>squ = sou(:=trate, momentum model.compile(loss='categoric print(model.summary()) Layer (type)</pre>	cal_cro Output	ssentropy', opti Shape	mizer-sgd, metr Param #	ics=['accuracy'])						
sys = source=trate, momentum model.compile(loss='categoriu print(model.summary()) Layer (type) conv2d_8 (Conv2D)	Output (None,	Shape 32, 28, 28)	Param #	ics=['accuracy'])						
<pre>sut(:=[rate, momentum model.comple[loss-'categori print(model.summary()) Layer (type) conv2d_8 (Conv2D) dropout_7 (Dropout)</pre>	Output (None, (None,	Shape 32, 28, 28) 32, 28, 28)	Param # 320 0	ics=['accuracy'])						
<pre>sup(:==sup(:==rate, momentum model.comple[loss-'categori print(model.summary()) Layer (type) conv2d_8 (Conv2D) dropout_7 (Dropout) conv2d_9 (Conv2D)</pre>	Output (None, (None, (None,	Shape 32, 28, 28) 32, 28, 28) 32, 28, 28)	mizer-sgd, metr Param # 320 0 9248	ics=['accuracy'])						
sys - sus(:=[:k, MoMATUM model.comple[idss='categori print(model.summary()) Layer (type) conv2d_8 (conv2D) dropout_7 (Dropout) conv2d_9 (conv2D) max_pooling2d_4 (MaxPooling2	Output (None, (None, (None, (None,	<pre>ssentropy', opti Shape 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 14, 14)</pre>	mizer=sgd, metr Param # 320 0 9248 0	ics=['accuracy'])						
Jude t. zocitie(185. Bodherum print(model.summary()) Layer (type) conv2d,8 (Conv2D) dropaut_7 (Dropaut) conv2d,9 (Conv2D) max_pooling2d_4 (MaxPooling2 Flatten_4 (Flatten)	Cal_cro Output (None, (None, (None, (None,	<pre>ssentropy', opti Shape 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 14, 14) 6272)</pre>	mizer=sgd, metr Param # 320 0 9248 0 0 0	ics=['accuracy'])						
yg = rouit (126; Boddridh print(model.sumary()) print(model.sumary()) conv2d,8 (Conv2D) dropout_7 (Dropout) conv2d,9 (Conv2D) max_pooling2d_4 (MasPooling2 Flatten 4 (Flatten) dense_7 (Dense)	Output (None, (None, (None, (None, (None, (None,	<pre>ssentropy', opti Shape 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 14, 14) 6272) 512)</pre>	mizer=sgd, metr Param # 320 0 9248 0 0 0 3211776	ics=['accuracy'])						
pp	Cal_cro Dutput (None, (None, (None, (None, (None, (None, (None,	ssentropy', opti Shape 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 14, 14) 6272) 512)	mizer=sgd, metr Param # 320 0 9248 0 0 3211776 0	its=['accuracy'])						
yp = nouitifde, Bobbrin print(Bodel.sumary()) Con24,8 (Con20) dropout_7 (Dropout) con24,8 (Con20) dropout_7 (Dropout) con24,8 (MaxPooling2 Flatten_4 (Flatten) dense_7 (Dense) dropout_8 (Dropout) dense,0(Snse)	Output (None, (None, (None, (None, (None, (None, (None, (None,	<pre>ssentropy', opti Shape 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 14, 14) 6272) 512) 512) 10)</pre>	mizer-sgd. metr Param # 320 0 9248 0 3211776 0 5130	ies=['scerscy'])						
age - mount if for a Model table print (model - summary(1)) Layer (type) com2d.6 (com2d) dropout_7 (Dropout) com2d.6 (com2d) mar_pooling2d_4 (MaxPooling2 Flatten,4 (Flatten) dense_7 (Dense) dropout_8 (Dropout) dense_8 (Dense) Trainable paras: 0 225,074 Trainable paras: 0 225,074	Cal_cro Dutput (None, (None, (None, (None, (None, (None, (None,	ssentropy', opti Shape 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 14, 14) 6272) 512) 512) 10)	mizer-sgd, metr Param # 320 0 9248 0 9 3211776 0 5130	ies-('accuracy'))						
yp = nousitifde Boddrim print(Bodd Subdrim print(Bodd Subdrim con2d,6 (Gon2D) dropout,7 (Dropout) con2d,9 (Gon2D) max.pooling2d,4 (MasPooling2 Flatten,4 (Flatten) dense,7 (Dense) dropout,8 (Dropout) dense,8 (Dense) Total parase: 3,226,474 Torianble parase: 3,226,474 Non-trainable parase: 0 None	Cal_cro Dutput (None, (None, (None, (None, (None, (None, (None,	Ssentropy', opti Shape 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 28, 28) 32, 14, 14) 62721 5122 5122 100	mizer-sgd, metr Param # 320 0 9248 0 9 3211776 0 5130 5130	ies-('accuracy'))						

batch_size = 32, shuffle = T	True)
rain on 45000 samples, validate on 15000 sample	les
5000/45000 [] - 1 3 - val_acc: 0.8542 poch 2/25	1158s 26ms/step - loss: 0.5762 - acc: 0.7917 - val_loss: 0.39
5000/45000 [======] -] 7 - val acc: 0.8841 poch 3/25	1124s 25ms/step - loss: 0.3643 - acc: 0.8676 - val_loss: 0.31
5000/45000 [] -] 5 - val_acc: 0.8956 noch 4/25	1158s 26ms/step - loss: 0.3129 - acc: 0.8853 - val_loss: 0.28
5000/45000 [] - 1 7 - val_acc: 0.9005 poch 5/25	1609s 36ms/step - loss: 0.2813 - acc: 0.8973 - val_loss: 0.27
5000/45000 [] - (- val_acc: 0.9045 poch 6/25	902s 20ms/step - loss: 0.2618 - acc: 0.9048 - val_loss: 0.258

Prediction

Accuracy of the prediction of the test image

Bayesian Image Recognition

PyMC3, Edward, TensorFlow Probability

Prediction

SciLife

Accuracy of the prediction of the test image

National Bioinformatics Infrastructure Sweden (NBIS)

Knut och Alice

Vetenskapsrådet

