
Data Generation -where, what and how much

Carl-Johan Rubin Head of Applications Development, National Genmics Infrastructure (NGI) SciLifeLab, Stockholm

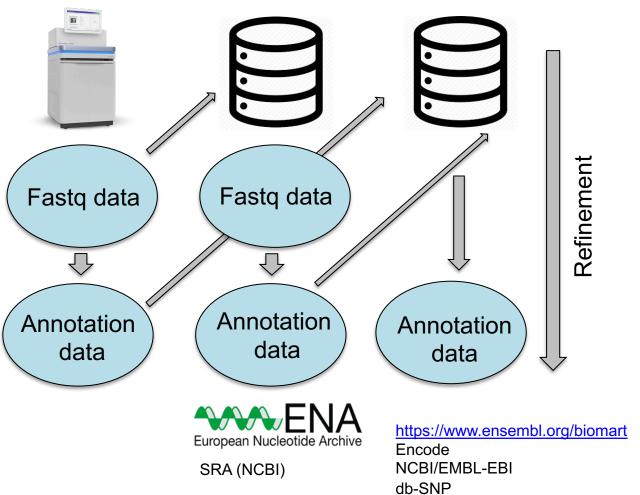
Talk outline

- Where can I get sequencing data
 - NGI
 - Organization
 - Technologies by node
 - User projects flow
 - Sequencing service providing companies
 - Data repositories

Data formats

- Fastq: compression
- Fastq/sam/bam/cram
 - Typical space requirements
- Typical examples per unit of WGS/RNA
- Best practise analyses

Genomics data


– data types and repositories

Sequencing data

- Raw data (images, bcl, signal data)
- Basecalled data
 - Typically .fastq format
 - Sam/bam

Annotation data

- Standardized formats
 - Bed, Wig,
 bedgraph, BigWig,
 BigBed, gff, gtf3,
 fasta, gfa, vcf, gvcf
 etc.

NATIONAL

SciL

Lab

Data repositories

- Sequence Read Archive (SRA)
 - <u>https://www.ncbi.nlm.nih.gov/</u>
 <u>sra</u>
 - SRA-toolkit
 - Link download + API
- European Nucleotide Archive (ENA)
 - <u>https://www.ebi.ac.uk/ena</u>
 - raw sequencing data, sequence assembly info functional annotation
 - Link download + API

4

Sequence data from repositories

European nucleotide archive (ENA)

ENA > Search & Browse > Downloading ENA data

Downloading ENA data

The main tool for downloading ENA data is the ENA Browser. The ENA Browser can be used both interactively and programmatically through REST URLs. All ENA data including assembled and annotated sequences is available for download through the ENA Browser.

Data in ENA can be searched via the search box in the header of all our pages. The search results are presented through the ENA Browser.

Please refer to the following sections for information on how to bulk download ENA data.

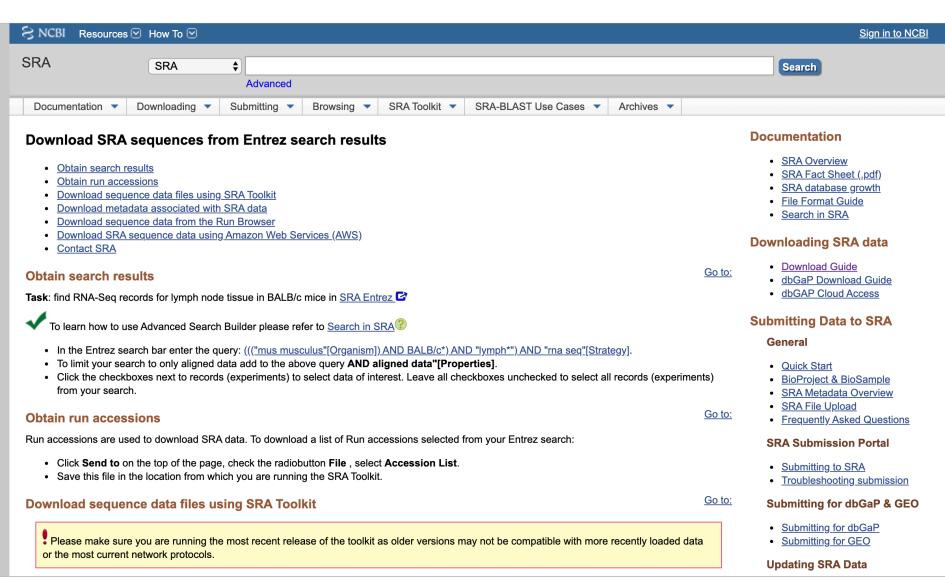
🛓 Sequences

Assembled and annotated sequences are available for bulk download. Information on how to do this can be found here.

📩 Read data

Read data is available for bulk download. Information on how to do this can be found here

土 Taxonomy data


Taxonomy data is available for bulk download. Information on how to do this can be found here.

Search & Browse

- Data formats
 - Genome assemblies
- Marker portal
- Taxon portal
- Programmatic access
 - Data retrieval
 - Taxon portal
 - Marker portal
 - Search
 - File reports
 - XREF service
- Genome assembly database
- Taxonomy Service
 - Translation tables

Sequence data from repositories

NCBI Sequence Read Archive (SRA)

Remove all from collection and send to search results

https://ewels.github.io/sra-explorer/

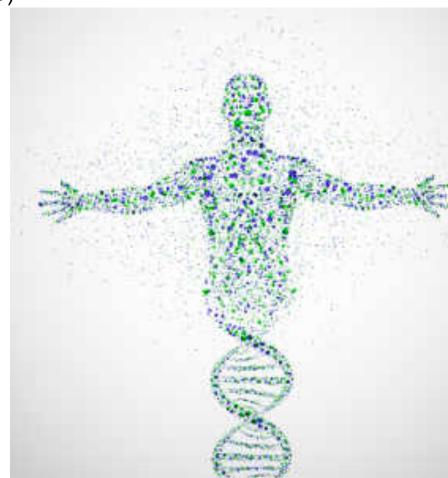
SRA-Explorer

24 saved datasets

SRA Explorer

This tool aims to make datasets within the Sequence Read Archive more accessible.

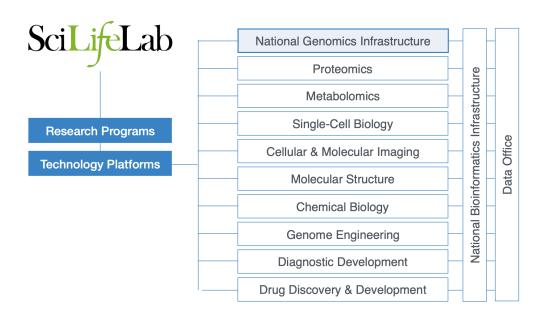
Search for:	SRP043510[All Fields]			0	۹	
Max Results	100 Sta	art At Record	0			
Need inspiration? Try GSE30	567, SRP043510, PRJEB8073, ERP	009109 or human 1	liver miRNA.			


24 Saved Datasets

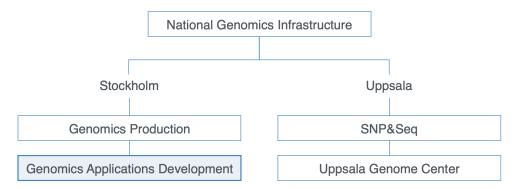
FastQ Downloads SRA Downloads Full Metadata To download FastQ files directly, sra-explorer queries the ENA for each SRA run accession number. Raw FastQ Download URLs Bash script for downloading FastQ files Aspera commands for downloading FastQ files Cluster Flow FastQ download file (nice filenames) bcbio project file for FastQ downloads (nice filenames)

Where can you get seq. data?

SciLifeLab platforms


- National Genomics Infrastructure (NGI)
- Eukaryotic Single Cell Genomics (ESCG)
- Ancient DNA
- Microbial Single Cell Genomics
- Diagnostics delevopment (Clinical Genomics
- Companies
 - Eurofins
 - TATAA
 - Etc.
- Data repositories
 - European Nucleotide Archive (ENA)
 - Sequence Read Archive (SRA)
 - NCBI / EMBL-EBI

Scil


ab

NGI organization

ANATIONAL TAC ATCAGENOMICS INFRASTRUCTURE Scilie

Lab

SciLifeLab NGI mission

MICS SciLif

Lab

Our mission is to offer a state-of-the-art infrastructure for massively parallel DNA sequencing and SNP genotyping, available to

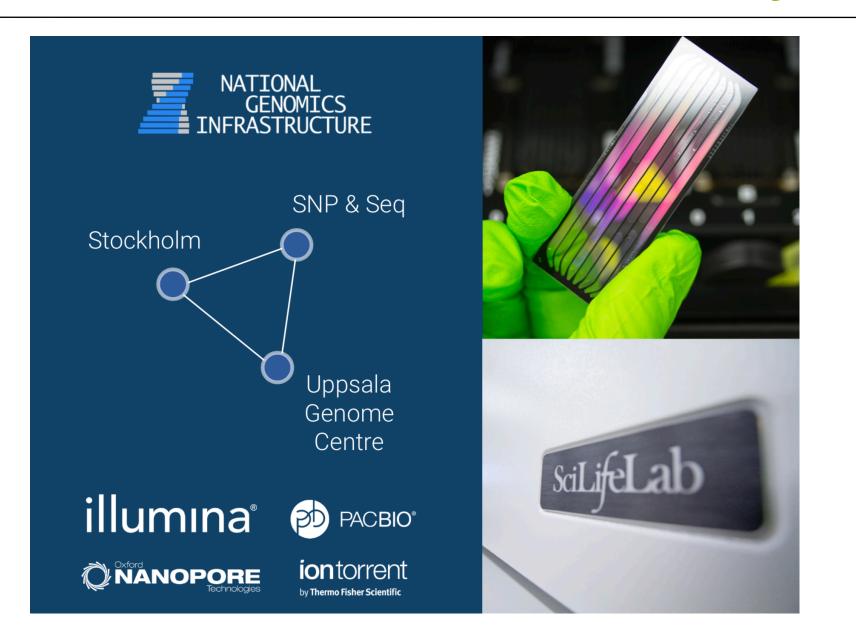
researchers all over Sweden

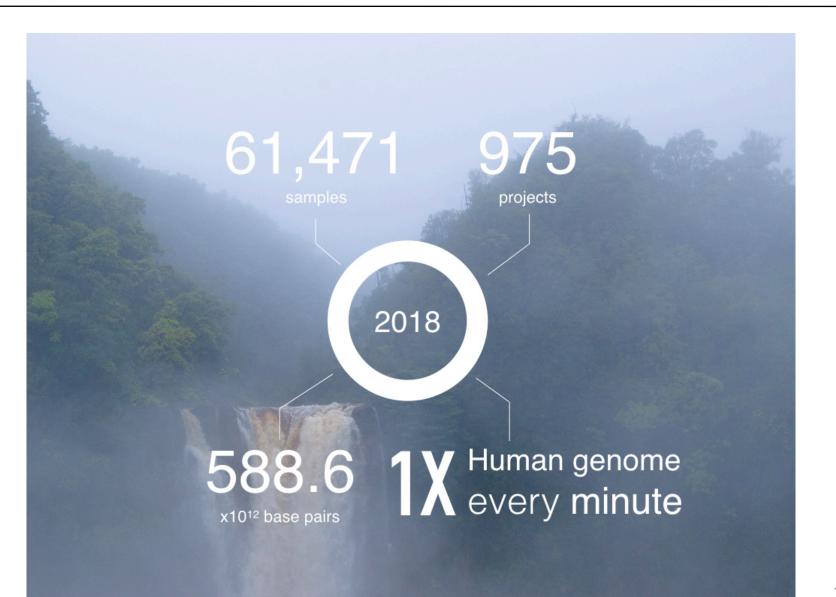
NGI methods/tech. by node

INFRASTRUCTURE SciLifeLab

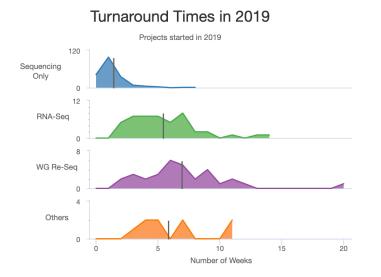
- Stockholm
- Bulk DNA-seq
- Bulk RNA-seq
- HiC + Omni-C
- 10X-chromium
- Nanopore
- ATAC-seq
- Low input RNA/DNA
- etc.

- Uppsala (SNP&Seq)
 - Bulk DNA-seq
 - Bulk RNA-seq
 - 10x single cell
 - Genotyping
 - ChIP-seq
 - WGBS + RRBS

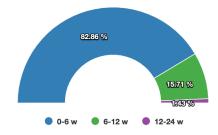

- Uppsala (UGC)
 - PacBio
 - Oxford nanopore
 - Ion Torrent
 - Assembly

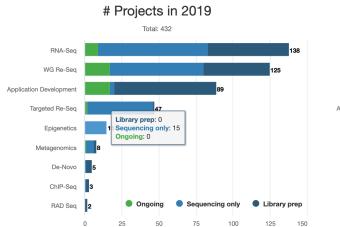

HiSeq X decommissioned

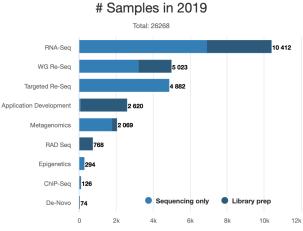
NGI technologies by node



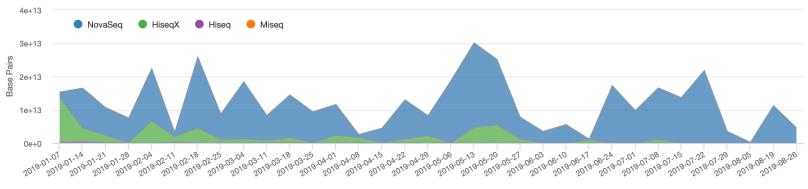
SciLifeLab NGI – throughput


NGI Stockholm 2019 stats

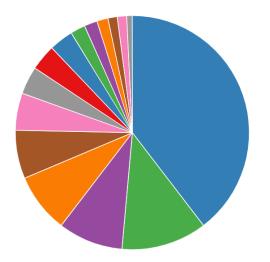

Delivery Times in 2019


Measured from sample QC pass to data delivery dates for projects started in 2019

Median turn around time for sequencing-ready libraries: 10 days



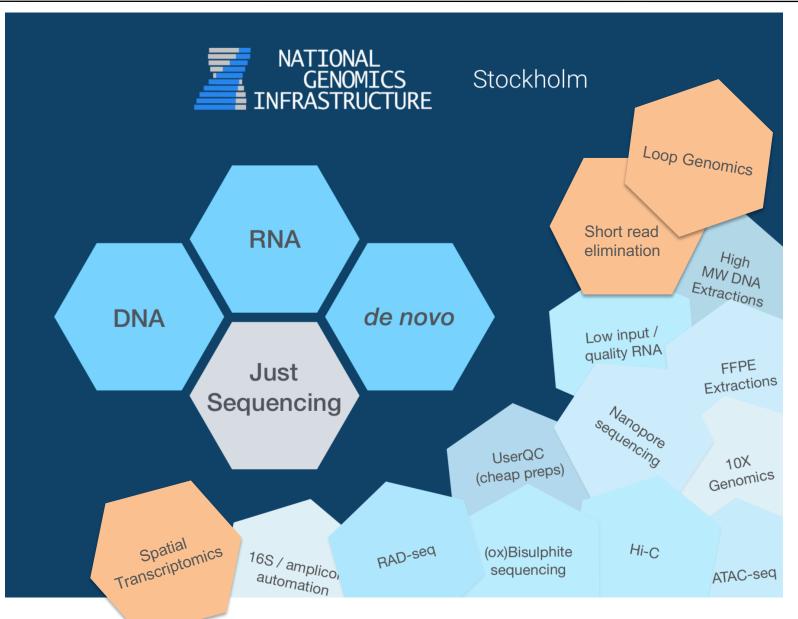
NGI Stockholm 2019 stats



Sequencing Throughput

Average for 33 weeks: 1698 Gbp per day (1 Human genome equivalent every 2.74 minutes)

Project Affiliations in 2019



NGI Stockholm methods by facility

16

NovaSeq Flowcell throughput and costs

					(Output per flow (M clusters		Cost per flowcell		lane (based a spec max)		Cost per lane ng XP kit for N	
						Spec	Typical						
Instrument	Flowcell	Read setup (base pairs)	Total cycles	Lanes / flowcell	Min	Max	Approx.	SEK	M clusters / lane	Gbp / lane	SEK	SEK / M bp	SEK / M clusters
NovaSeq	S Prime	2x50	100	2	650	800	?	24,330	400	40	16,435	0.41	41.09
NovaSeq	S Prime	2x150	300	2	650	800	?	41,631	400	120	25,085	0.21	62.71
NovaSeq	S Prime	2x250	500	2	650	800	?	59,473	400	200	34,006	0.17	85.02
NovaSeq	S1	2x50	100	2	1300	1600	1800	44,335	800	80	26,437	0.33	33.05
NovaSeq	S1	2x100	200	2	1300	1600	1800	59,473	800	160	34,006	0.21	42.51
NovaSeq	S1	2x150	300	2	1300	1600	1800	71,368	800	240	39,954	0.17	49.94
NovaSeq	S2	2x50	100	2	3300	4100	4000	102,726	2050	205	55,633	0.27	27.14
NovaSeq	S2	2x100	200	2	3300	4100	4000	140,573	2050	410	74,556	0.18	36.37
NovaSeq	S2	2x150	300	2	3300	4100	4000	164,903	2050	615	86,721	0.14	42.30
NovaSeq	S4	2x100	200	4	8000	10000	10000	194,715	2500	500	51,325	0.10	20.53
NovaSeq	S4	2x150	300	4	8000	10000	10000	224,475	2500	750	58,765	0.08	23.51
MiSeq	v2	1x50	50	1	10	10	10	8,982	10	0.5	8,982	17.96	898.17
MiSeq	v2	2x150	300	1	10	10	10	11,551	10	3	11,551	3.85	1,155.08
MiSeq	v2	2x250	500	1	10	10	10	12,938	10	5	12,938	2.59	1,293.81
MiSeq	v3	2x75	150	1	18	18	18	9,948	18	2.7	9,948	3.68	552.65
MiSeq	v3	2x300	600	1	18	18	18	17,367	18	10.8	17,367	1.61	964.85
MiSeq	Nano v2	2x150	300	1	1	1	1	3,309.03	1	0.3	3,309.03	11.03	3309.03

Prices last confirmed: 2019-02-15

Most cost efficient NovaSeq flow cell 7-8 mammalian genomes at 30X / lane 4 lanes \rightarrow 28-32 genomes per flow cell

More flexible sequencing

INFRASTRUCTURE SciLifeLab

- NovaSeq throughput is high
 - Users want more flexibility
 - Not just full S4 lanes
- Now also 1/4 lanes.
- --> Lower sequencing costs
- Development efforts at NGI
 - Pooling balance
 - New indexes

				Cost per lane g XP kit for N	
Instrument	Flowcell	Read setup (base pairs)	SEK	SEK / M bp	SEK / M clusters
NovaSeq	S Prime	2x50	16,435	0.41	41.09
NovaSeq	S Prime	2x150	25,085	0.21	62.71
NovaSeq	S Prime	2x250	34,006	0.17	85.02
NovaSeq	S1	2x50	26,437	0.33	33.05
NovaSeq	S1	2x100	34,006	0.21	42.51
NovaSeq	S1	2x150	39,954	0.17	49.94
NovaSeq	S2	2x50	55,633	0.27	27.14
NovaSeq	S2	2x100	74,556	0.18	36.37
NovaSeq	S2	2x150	86,721	0.14	42.30
NovaSeq	S4	2x100	51,325	0.10	20.53
NovaSeq	S4	2x150	58,765	0.08	23.51
MiSeq	v2	1x50	8,982	17.96	898.17
MiSeq	v2	2x150	11,551	3.85	1,155.08
MiSeq	v2	2x250	12,938	2.59	1,293.81
MiSeq	v3	2x75	9,948	3.68	552.65
MiSeq	v3	2x300	17,367	1.61	964.85
MiSeq	Nano v2	2x150	3,309.03	11.03	3309.03

Long read sequencing

• ONT

PacBio

Long read sequencing

current stats

Platform	Throughput (flowcell	SEK/ Gb	Read lengths	Quality (Phred)
ONT (P)	80-150Gb	200-400	Max 2 Mb	R9 read: 12 R9 consensus: 30 R10 consensus: 40
PacBio Sequel	10 Gb	1000-1500	Max 170 kb	Read: 8-9 HiFi: 20-50
PacBio Sequel II	100-150Gb	200-300	Max 170 kb	Read: 8-9 HiFi: 20-50

ONT signal level data 5-10x size of basecalled data

NGI projects pipeline

from consultation to data

INFRASTRUCTURE SciLifeLab

NGI – orders and information https://ngisweden.scilifelab.se/

🚽 🏦 Information - Documents Contact About us

Next-Generation Sequencing and Genotyping for Swedish Research

NGI Sweden Order Portal

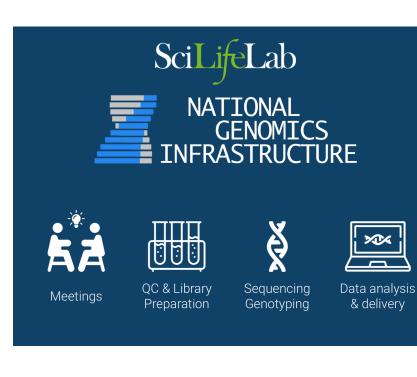
This portal is for submitting orders for services provided by the National Genomics Infrastructure Sweden (NGI). To make an order, please log in and choose the application most suitable for your project. If uncertain about the choice of technology, please select the "Request a meeting" option. You can read more about the different technologies and How to place an order under "Information" in the menu at the top of the page.

Projects from other countries are admissible, but have lower priority than projects performed by researchers based in Sweden. Depending on the queue situation, NGI may decide to decline a non-Swedish project altogether.

Turn Around Times and Status for the Stockholm node.

Subscribe to our mailing list

email address

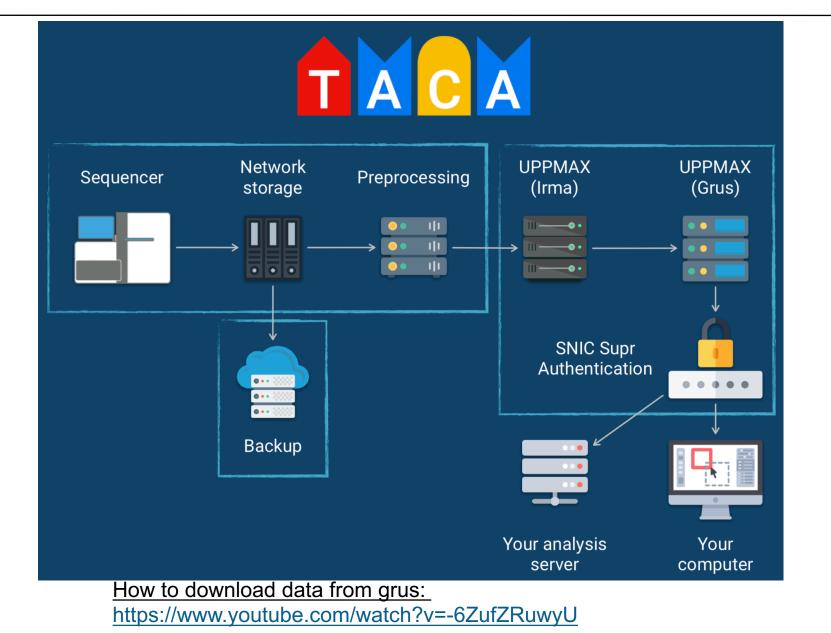

Subscribe

Login	Illumina Sequencing + Create order
Email	Order form for Illumina sequencing.
Email address of account	
Password	Request a meeting + Create order
	If you are unsure about the appropriate method for your scientific problem, request a meeting for a discussion with us.
◆D Login	
	Ion Sequencing + Create order
Register account	Order form for sequencing by Ion Proton or Ion S5XL.
Reset password	PacBio Sequencing + Create order
	Order form for PacBio sequencing. This is available only at the NGI Uppsala UGC

node

NGI – orders and information https://ngisweden.scilifelab.se/

- Meeting with NGI project coordinators
 - Feasibility discussion
 - Limitations (samples/amounts/etc.)
 - Capabilities
 - Pilot projects
- Submit order
 - Project information
 - Sample sheets
 - Plates sent out
- Lab + data management
- Deliveries
 - Usually 6-12 weeks *
 - Secure server deliveries (2-factor authentication) (SNIC/SUPR)


NGI laboratory and data flow

NGI – data processing

NGI – data deliveries

P1234: Test_NGI_Project	
neral Stats	
BI-RNAseq	
ample Similarity	
DS Plot	
AR	
tadapt	
stQC	
equence Quality Histograms	
er Sequence Quality Scores	
er Base Sequence Content	_1
er Sequence GC Content	
er Base N Content	
equence Length Distribution	
equence Duplication Levels	
verrepresented sequences	
dapter Content	

.

Ge

NG

Sa

ST/

Cu

Fas

Se

P

Pe

S

0

A

<u>MultiQC</u>

P1234: Test_NGI_Project

This is an example project. All identifying data has been removed.

Contact E-mail: Application Type: Sequencing Platform: Sequencing Setup:	phil.ewels@scilifelab.se RNA-seq HiSeq 2500 High Output V4 2x125
Reference Genome:	hg19

Report generated on 2017-05-17, 18:43 based on data in: /Users/philewels/GitHub/MultiQC_website/public_html/examples/ngi-rna/data

General Statistics

Ĝ Copy table III Configure Columns ↓ Plot Showing 22/22 rows and 6/8 columns.

Sample Name	% Aligned	M Aligned	% Trimmed	% Dups	% GC	M Seqs	
P1234_1001	68.2%	22.8	10.3%	71.3%	49%	33.7	
P1234_1002	67.9%	20.9	10.7%	70.1%	50%	31.1	
P1234_1003	64.7%	21.7	11.0%	72.3%	50%	33.7	
P1234_1004	55.2%	17.0	13.2%	73.4%	51%	31.2	
P1234_1005	53.0%	17.7	15.9%	75.8%	52%	33.8	
P1234_1006	52.7%	16.1	14.1%	73.8%	52%	30.8	
P1234_1007	33.0%	7.0	32.0%	80.5%	52%	21.8	
P1234_1008	27.5%	4.3	44.2%	79.1%	50%	16.7	
P1234_1009	52.3%	10.5	20.9%	64.2%	46%	20.5	

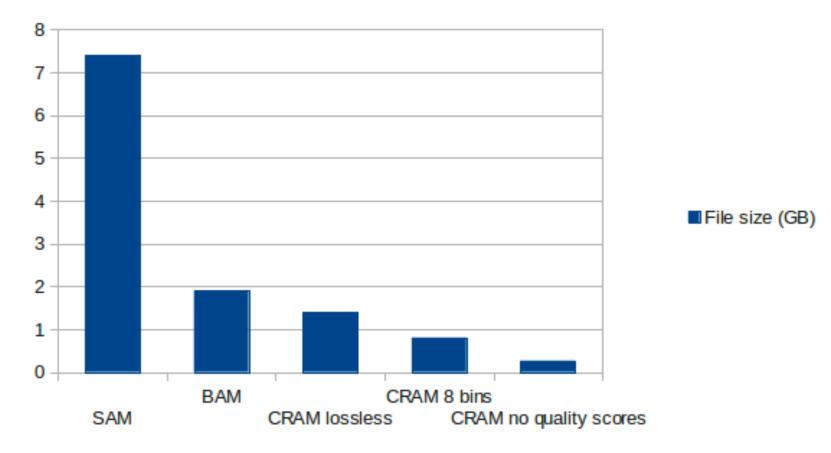
А

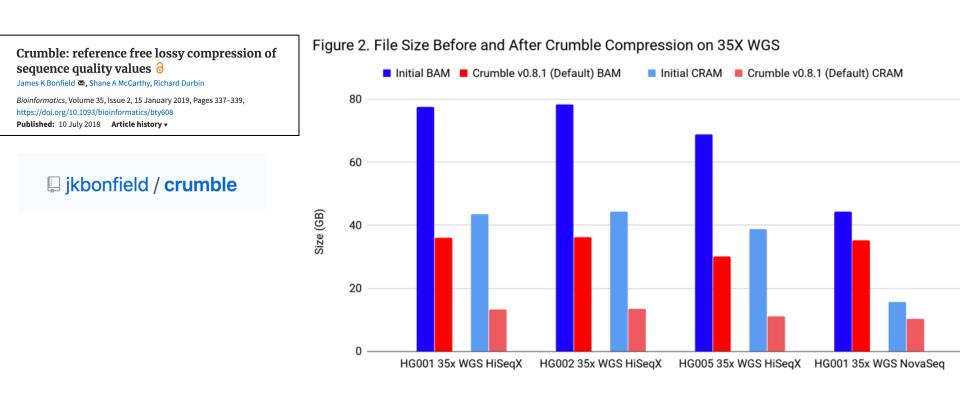
Ø)

Ŧ

H

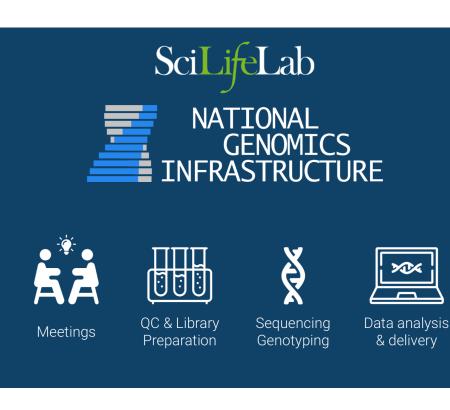
- WGS human:
 - Delivers: fastq, bams, vcf-files from different tools
 - Preprocessing: *bwa*, *GATK*
 - Germline/somatic variant calling
 - Annotation
 - Reporting
- RNA-seq
 - The workflow processes raw data from FastQ
 - <u>FastQC</u>,
 - <u>Trim Galore</u>
 - <u>STAR/HiSAT2</u>),
 - generates gene counts (<u>featureCounts</u>, <u>StringTie</u>)
 - quality-control
 <u>RSeQC</u>, <u>dupRadar</u>, <u>Preseq</u>, <u>edgeR</u>, <u>Multi</u>
 <u>QC</u>).





SAM: Sequence Alignment Map format (raw tex) BAM: binary SAM (factor 3-4 compression) CRAM: more efficiently compressed bam (lossless to lossy)

https://blog.dnanexus.com/2018-07-23-breaking-down-crumble/


	WGS 30x	RNA-seq (20M)
Fastq.gz	50 Gb	4-5 Gb
bam	80 Gb	6-8 Gb
100 samples	13 Tb	1-1.3 Tb

INFRASTRUCTURE SciLifeLab

Integrating information from NGI in data management plan

Integrating NGI orders into Data **Management Plan**

- What data to get
 - Contact NGI / NGI website
 - http://ngisweden.scilifelab.se
- Deliveries:
 - GRUS
 - Hard drive (not recommended)
- No long term storage obligation
 - Plan for storage accordingly
 - SNIC / ENA / other backup

Thanks for your attention

Carl-Johan Rubin @callerubin carl.rubin@scilifelab.se

support@ngisweden.se http://ngisweden.scilifelab.se http://opensource.scilifelab.se