

Interdisciplinary collaboration

"the whole is greater than the sum of its parts"

~ Aristotele

Olga Dethlefsen olga.dethlefsen@nbis.se

Can I ask you a question? I'm trying to understand the results of this copy number variations analysis and I'd thought I would ask you as you have been working with EVERYTHING (~ NBIS colleague)

Can I ask you a question? I'm trying to understand the results of this copy number variations analysis and I'd thought I would ask you as you have been working with EVERYTHING (~ NBIS colleague)

BEng/MSc in Technical Physics, PL

MSc internship, FR

PhD in Bioinformatics, UK Medical Statistician, Oxford, UK

Post-docs experiences KI, Sweden & RIKEN, Japan

Can I ask you a question? I'm trying to understand the results of this copy number variations analysis and I'd thought I would ask you as you have been working with EVERYTHING (~ NBIS colleague)

BEng/MSc in Technical Physics, PL

MSc internship, FR

PhD in Bioinformatics, UK Medical Statistician, Oxford, UK

Post-docs experiences KI, Sweden & RIKEN, Japan

- at NBIS since 2015
- "bioinformatics expert"
- 40+ projects
- across multiple omics
- medical focus

* to highlight and discuss some of the collaboration aspects worth thinking about

* to highlight and discuss some of the collaboration aspects worth thinking about * to introduce "reproducibility" concepts covered more in day 2

* to highlight and discuss some of the collaboration aspects worth thinking about * to introduce "reproducibility" concepts covered more in day 2

to prepare a first draft of a "Good collaboration checklist"

- * to highlight and discuss some of the collaboration aspects worth thinking about
- * to introduce "reproducibility" concepts covered more in day 2
- to prepare a first draft of a "Good collaboration checklist"

<u>https://docs.google.com/document/d/</u> <u>1MpefgEukIXooeo86Q5bX_wjD4RQxMHT9OIY1jEQA2q4/edit?usp=sharing</u>

<u>https://docs.google.com/document/d/</u> <u>1MpefgEukIXooeo86Q5bX_wjD4RQxMHT9OIY1jEQA2q4/edit?usp=sharing</u>

"the act of working together with other people or organisations to create or achieve something"

- Cambridge Dictionary

<u>https://docs.google.com/document/d/</u> <u>1MpefgEukIXooeo86Q5bX_wjD4RQxMHT9OIY1jEQA2q4/edit?usp=sharing</u>

"the act of working together with other people or organisations to create or achieve something"

- Cambridge Dictionary

<u>https://docs.google.com/document/d/</u> <u>1MpefgEukIXooeo86Q5bX_wjD4RQxMHT9OIY1jEQA2q4/edit?usp=sharing</u>

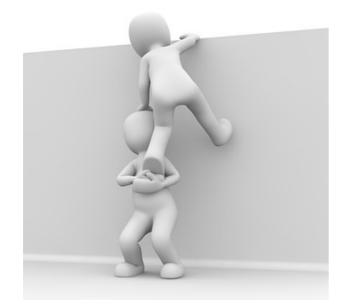
> "the act of working together with other people or organisations to create or achieve something"

> > - Cambridge Dictionary

- O trust
- O attachment
- clarity and alignment
- O speed
- O technology, geography and culture

<u>https://docs.google.com/document/d/</u> <u>1MpefgEukIXooeo86Q5bX_wjD4RQxMHT9OIY1jEQA2q4/edit?usp=sharing</u>

"the act of working together with other people or organisations to create or achieve something"


- Cambridge Dictionary

O trust

- o attachment
- O clarity and alignment
- Speed
- O technology, geography and culture

- **O** diversity
- O speed
- engagement
- O productivity

Alignment on a collective goal

- **O** missing details
- **O** conflicting incentives
- O conflicting prioritisation
- conflict avoidance

Alignment on a collective goal

- **O** missing details
- **O** conflicting incentives
- Conflicting prioritisation
- Conflict avoidance

Team players

- O core team
- others joining as needed
- roles and responsibilities
 - e.g. facilitators, evaluators
 - e.g. coordinators, communicators
- engage leadership support
- setting the team for success

THE WORK ISSUE

What Google Learned From Its Quest to Build the Perfect Team

New research reveals surprising truths about why some work groups thrive and others falter.

C Equality of distribution of conversational turn-talking

O Highly average social

sensitivity

Psychological Safety Team members feel safe to take risks and be vulnerable in front of each other. Dependability Team members get things done on time and meet Google's high bar for excellence. 3 Structure & Clarity Team members have clear roles. plans, and goals. Meaning Work is personally important to team members. Impact Team members think their work matters and creates change. re:Work

https://rework.withgoogle.com/print/guides/5721312655835136/

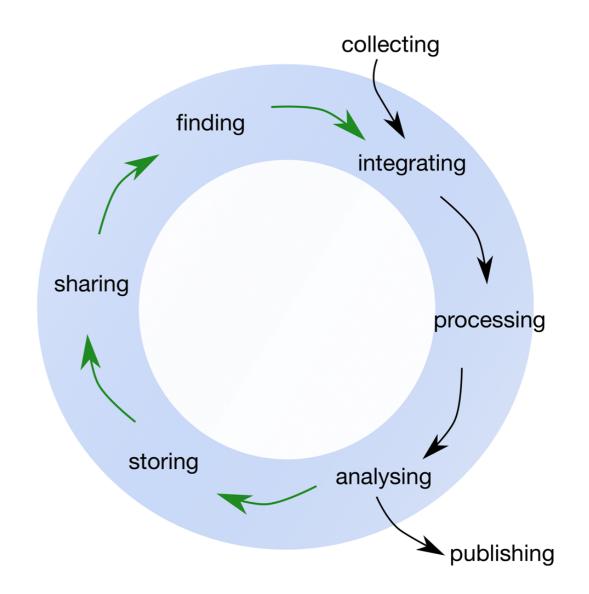
https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html?smid=pl-share

Project management main steps

M defining project

Iisting tasks

Mestimate times and costs


⊡ assess risk and prepare action plans

Monitor progress & costs

Mreview

- **Project management main steps**
- **M**defining project
- **Solution** Issues
- **M**estimate times and costs
- **⊡** assess risk and prepare action plans
- **Monitor progress & costs**
- **M**review

Simplified Data Life Cycle framework for bioscience, biomedical and bioinformatics data

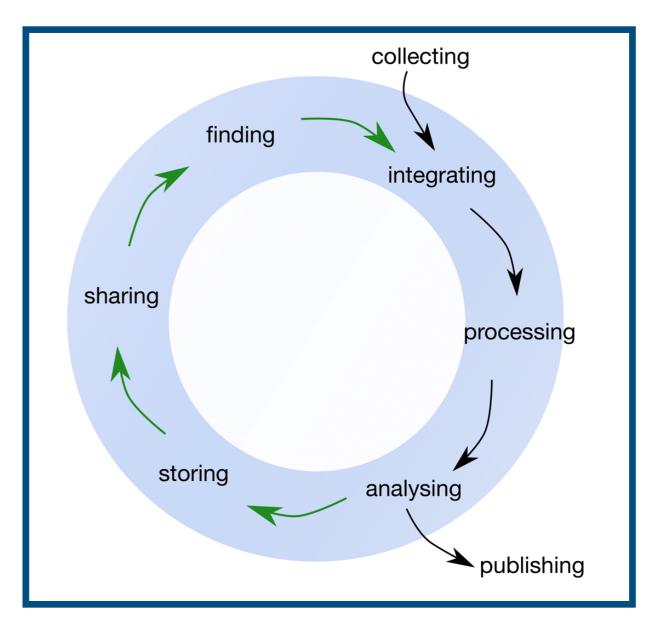
Griffin PC, Khadake J, LeMay KS et al. Best practice data life cycle approaches for the life sciences [version 2; peer review: 2 approved]. F1000Research 2018, 6:1618 (<u>https://doi.org/10.12688/f1000research.12344.2</u>)

Project management main steps

Mdefining project

Iisting tasks

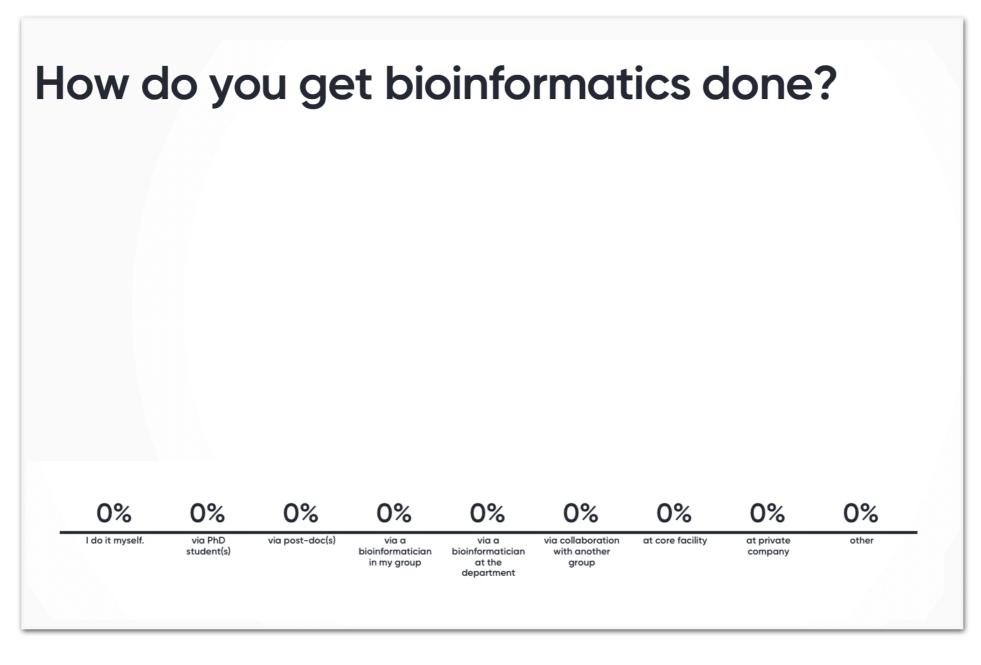
Mestimate times and costs


⊡ assess risk and prepare action plans

Monitor progress & costs

Mreview

Simplified Data Life Cycle framework for bioscience, biomedical and bioinformatics data


potential bioinformatics needs

Griffin PC, Khadake J, LeMay KS et al. Best practice data life cycle approaches for the life sciences [version 2; peer review: 2 approved]. F1000Research 2018, 6:1618 (<u>https://doi.org/10.12688/f1000research.12344.2</u>)

Go to <u>www.menti.com</u> and use the code 50 54 91

<u>https://docs.google.com/document/d/</u> <u>1MpefgEukIXooeo86Q5bX_wjD4RQxMHT9OIY1jEQA2q4/edit?usp=sharing</u>

I do it by myself

most likely unrealistic, admirable, lonely

OPTIONS		
I do it by myself	most likely unrealistic, admirable, lonely	
via a PhD student(s)	is there a second supervisor? asking for troubles, if not	

I do it by myself	most likely unrealistic, admirable, lonely
via a PhD student(s)	is there a second supervisor? asking for troubles, if not
via a post-docs(s)	it may work short-term if a post-doc(s) has some experience

I do it by myself	most likely unrealistic, admirable, lonely
via a PhD student(s)	is there a second supervisor? asking for troubles, if not
via a post-docs(s)	it may work short-term if a post-doc(s) has some experience
via a group / depart. bioinformatician	it may be a good set-up for the group, and hopefully for the bioinformatician; is anyone discussing with him / her career development?

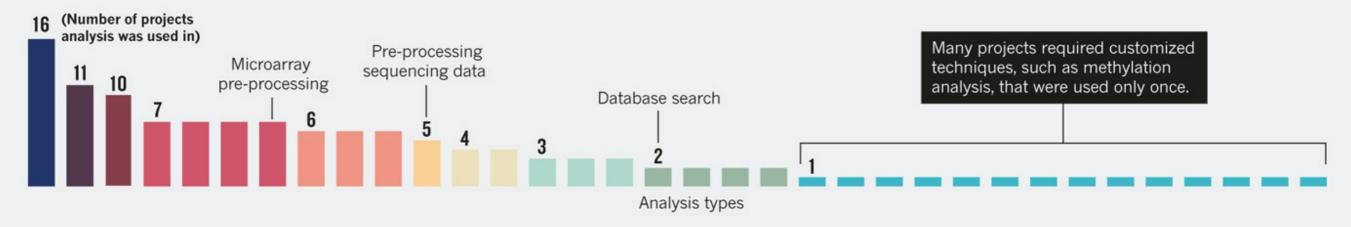
I do it by myself	most likely unrealistic, admirable, lonely
via a PhD student(s)	is there a second supervisor? asking for troubles, if not
via a post-docs(s)	it may work short-term if a post-doc(s) has some experience
via a group / depart. bioinformatician	it may be a good set-up for the group, and hopefully for the bioinformatician; is anyone discussing with him / her career development?
via a group collaboration	may be a win-win, long-lasting collaboration

I do it by myself	most likely unrealistic, admirable, lonely
via a PhD student(s)	is there a second supervisor? asking for troubles, if not
via a post-docs(s)	it may work short-term if a post-doc(s) has some experience
via a group / depart. bioinformatician	it may be a good set-up for the group, and hopefully for the bioinformatician; is anyone discussing with him / her career development?
via a group collaboration	may be a win-win, long-lasting collaboration
at a sequencing centre	wait, have you double-checked that the default pipelines and workflows are applicable to your project, worth time and money?

I do it by myself	most likely unrealistic, admirable, lonely
via a PhD student(s)	is there a second supervisor? asking for troubles, if not
via a post-docs(s)	it may work short-term if a post-doc(s) has some experience
via a group / depart. bioinformatician	it may be a good set-up for the group, and hopefully for the bioinformatician; is anyone discussing with him / her career development?
via a group collaboration	may be a win-win, long-lasting collaboration
at a sequencing centre	wait, have you double-checked that the default pipelines and workflows are applicable to your project, worth time and money?
at a core facility	may be great, but what really motivates these bioinformaticians? And how does the core facility work?

I do it by myself	most likely unrealistic, admirable, lonely
via a PhD student(s)	is there a second supervisor? asking for troubles, if not
via a post-docs(s)	it may work short-term if a post-doc(s) has some experience
via a group / depart. bioinformatician	it may be a good set-up for the group, and hopefully for the bioinformatician; is anyone discussing with him / her career development?
via a group collaboration	may be a win-win, long-lasting collaboration
at a sequencing centre	wait, have you double-checked that the default pipelines and workflows are applicable to your project, worth time and money?
at a core facility	may be great, but what really motivates these bioinformaticians? And how does the core facility work?
at an external	will you ever see the code and be able to explain M&M?

#PushButtonBioinformatics

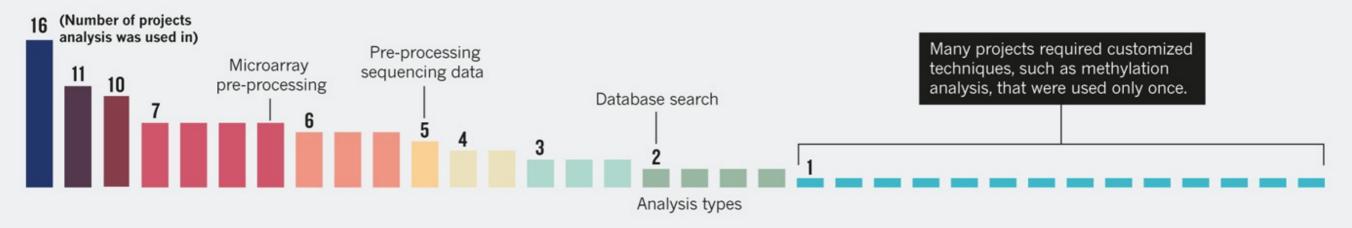


"Biological data will continue to pile up unless those who analyse it are recognised as creative collaborators in need of career paths"

– Jeffrey Chang, 2015

Over 18 months, 46 data-analysis projects undertaken at the bioinformatics core of the University of Texas Health Science Center at Houston required 34 different types of analysis — most were used infrequently. Each project demanded unique combinations of analyses, demonstrating how bioinformaticians must be versatile, creative and collaborative.

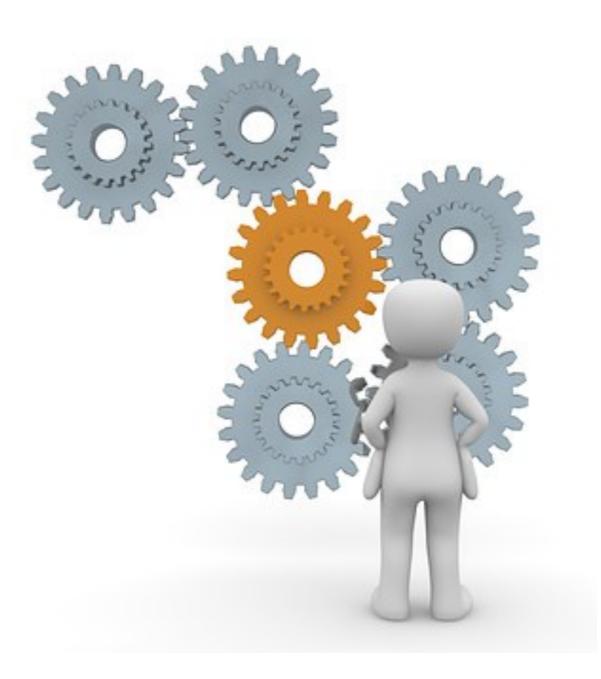
Core services: Reward bioinformaticians; Nature 520, 151–152 (09 April 2015) doi:10.1038/520151a



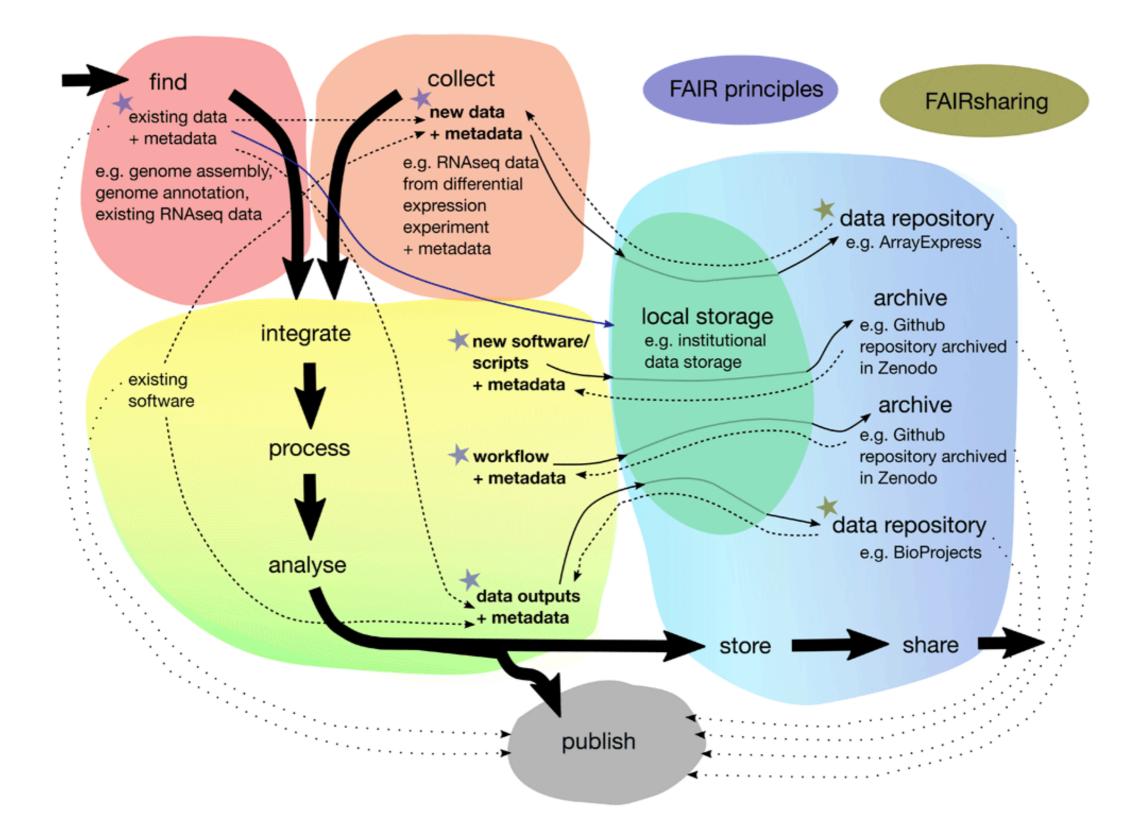
"Biological data will continue to pile up unless those who analyse it are recognised as creative collaborators in need of career paths"

– Jeffrey Chang, 2015

Over 18 months, 46 data-analysis projects undertaken at the bioinformatics core of the University of Texas Health Science Center at Houston required 34 different types of analysis — most were used infrequently. Each project demanded unique combinations of analyses, demonstrating how bioinformaticians must be versatile, creative and collaborative.



Core services: Reward bioinformaticians; Nature 520, 151–152 (09 April 2015) doi:10.1038/520151a


"87% of analysis time was spent on projects that had the characteristics of research...These findings suggest that to foster team-based multidisciplinary research, institutions must adopt policies that recognise contributions to research by applied bioinformatics scientists."

- Jeffrey Chang, 2019

Practicalities: key aspects

A short intro to how we work & reproducibility

Griffin PC, Khadake J, LeMay KS et al. Best practice data life cycle approaches for the life sciences [version 2; peer review: 2 approved]. F1000Research 2018, 6:1618 (<u>https://doi.org/10.12688/f1000research.12344.2</u>)

***** DATA

Sharing data with a statistician / bioinformatician

- The raw data
- The tidy / clean dataset
- A code book describing each variable and its values in the tidy data set
- An explicit and exact recipe to go from 1 to 2 and 3

***** DATA

Sharing data with a statistician / bioinformatician

- The raw data
- The tidy / clean dataset
- A code book describing each variable and its values in the tidy data set
- An explicit and exact recipe to go from 1 to 2 and 3

Expecting back

- An analysis script that performs each of the analyses
- The exact computer code
- All output files and figures generated

***** Bioinformatics File Formats

***** Bioinformatics File Formats

FASTA *.fa, *fasta, *.sa

A simple way to represent nucleotide of amino acid sequences of nucleic acids and proteins; 2 lines per entry

>XR_002086427.1 Candida albicans SC5314 uncharacterized ncRNA (SCR1), ncRNA

***** Bioinformatics File Formats

FASTA *.fa, *fasta, *.sa

A simple way to represent nucleotide of amino acid sequences of nucleic acids and proteins; 2 lines per entry

>XR_002086427.1 Candida albicans SC5314 uncharacterized ncRNA (SCR1), ncRNA

 FASTQ
 *.fastq, *fq, *sanfastq
 Puts together sequence and its quality score Q; 4 lines per entry

 @K00188:208:HFLNGBBXX:3:1101:1428:1508
 2:N:0:CTTGTA

 ATAATAGGATCCCTTTTCCTGGAGCTGCCTTTAGGTAATGTAGTATCTNATNGACTGNCNCCCANANGGCTAAAGT

source: https://bioinformatics.uconn.edu/resources-and-events/tutorials-2/file-formats-tutorial/#

SAM / BAM

*.sam, *.bam

Sequence Alignment Map, generated following mapping of the reads to reference sequence; BAM a binary equivalent; header lines (@) followed by 1 line per entry

Example :	QNAME	FL/	AG RI	NAME	POS	MAPQ	CIGAR	RNEXT	PNEXT	тι	.EN	SEC	2	
1:497:R:	-272+13M1	L7D24M	113	1	497	37	37M	15	1003386	62	0	CGGGTCT	GACCTGAG	GAG
AACTGTGC	тссбсстто	CAG	0;==-=	=9;>>>>>	=>>>>>>>	>>>>=>>>	>>>>>>>>	XT:A:U	NM:i:0	SM:i:37	AM:i:0	X0:i:1	X1:i:0	ΧМ
:i:0	X0:i:0 X	(G:i:0	MD:Z:3	7										
19:20389	:F:275+18	M2D19M	99	1	17644	0	37M	=	17919	314	TATGACT	GCTAATAA	ГАССТАСА	CAT
GTTAGAAC	CAT >	·>>>>>>>	->>>>>>>	>>>>><<	>>><<>>4	1::>>:<9	RG:Z:U	10098:1	XT:A:R	NM:i:0	SM:i:0	AM:i:0	X0:i:4	X1
:i:0	XM:i:0 X	(0:i:0	XG:i:0	MD:Z:3	7									
19:20389	:F:275+18	M2D19M	147	1	17919	0	18M2D1	ЭM	=	17644	-314	GTAGTAC	CAACTGTA	AGT

SAM / BAM

*.sam, *.bam

Sequence Alignment Map, generated following mapping of the reads to reference sequence; BAM a binary equivalent; header lines (@) followed by 1 line per entry

Example :	QNAME	FL/	AG RI	NAME	POS	MAPQ	CIGAR	RNEXT	PNEXT	TL	.EN	SEC	2	
1:497:R	:-272+13M1	L7D24M	113	1	497	37	37M	15	10033866	52	0	CGGGTCTC	GACCTGAG	GAG
AACTGTG	стссбсстто	CAG	0;==-=	=9;>>>>=	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>=>>>	>>>>>>	XT:A:U	NM:i:0	SM:i:37	AM:i:0	X0:i:1	X1:i:0	XM
:i:0	X0:i:0 >	(G:i:0	MD:Z:3	7										
19:2038	9:F:275+18	3M2D19M	99	1	17644	0	37M	=	17919	314	TATGACT	GCTAATAAT	TACCTACA	CAT
GTTAGAA	CCAT >	>>>>>>>>		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>><<>>4	::>>:<9	RG:Z:UM	0098:1	XT:A:R	NM:i:0	SM:i:0	AM:i:0	X0:i:4	X1
:i:0	XM:i:0 >	(0:i:0	XG:i:0	MD:Z:37										
19:2038	9:F:275+18	M2D19M	147	1	17919	0	18M2D19	М	=	17644	-314	GTAGTAC	CAACTGTA	AGT

https://samtools.github.io/hts-specs/VCFv4.2.pdf

VCF *.vcf Variant Calling Format/File, used to store gene sequence variations, header lines (##) followed by 1 liner per entry

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">

##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003

20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.

20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3

20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:3 5:4

20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2

20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

GFF/GTF *.gff, *.gff2, *.gff3, *.gtf

General Feature Format / Gene Transfer Format, used for describing genes and other features of DNA, RNA and protein sequences

GTF

1 transcribed_unprocesse	d_pseudogene gene	11869 14409	. + .	. gene_id	"ENSG00000223972";	gene_name	"DDX11L1";	gene_source	"havana";	gene_biotype	
1 processed_transcript	transcrip	11869 14409	• + •	. gene_id	"ENSG00000223972";	transcript	_id "ENSTO	0000456328";	gene_name	"DDX11L1"; ge	an(

GFF

Х	Ensembl F	Repeat	2419108	2419128	42			hid=trf; hstart=1; hend=21	
Х	Ensembl F	Repeat	2419108	2419410	2502	-		hid=AluSx; hstart=1; hend=303	
Х	Ensembl F	Repeat	2419108	2419128	0			hid=dust; hstart=2419108; hend=2419128	
Х	Ensembl H	Pred.tra	ns.	2416676	2418760	450.19	-	2 genscan=GENSCAN0000019335	
Х	Ensembl V	Variatio	n	2413425	2413425		+		
Х	Ensembl V	Variatio	n	2413805	2413805		+		

Fields

Fields must be tab-separated. Also, all but the final field in each feature line must contain a value; "empty" columns should be denoted with a '.'

- 1. seqname name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix. Important note: the seqname must be one used within Ensembl, i.e. a standard chromosome name or an Ensembl identifier such as a scaffold ID, without any additional content such as species or assembly. See the example GFF output below.
- 2. source name of the program that generated this feature, or the data source (database or project name)
- 3. feature feature type name, e.g. Gene, Variation, Similarity
- 4. start Start position of the feature, with sequence numbering starting at 1.
- 5. end End position of the feature, with sequence numbering starting at 1.
- 6. score A floating point value.
- 7. strand defined as + (forward) or (reverse).
- 8. frame One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on...
- 9. attribute A semicolon-separated list of tag-value pairs, providing additional information about each feature.

source: https://www.ensembl.org/info/website/upload/gff.html

Let's discuss: share your experiences in any of the following

- Iocating data
- describing data (metadata)
- coding data (continous, ordinal, categorical, missing, censored)
- sharing data

***** Unix-like operating systems

Unix, 1960s, Bell Labs

"Unix philosophy" of creating small, modular utilities that do one thing and do them well.

Commonly used for: working with files and directories; checking file sizes, previewing data, summary statistics

<pre># List directory content</pre>									
[olga@rackham3 Fastq]\$ ls -lh									
total 23G									
-rw-rw	1	5.8G	Sep	10	09:18	P12516_101_R1.fastq			
-rw-rw	1	5.8G	Sep	10	09:18	P12516_101_R2.fastq			
-rw-rw	1	5.4G	Sep	10	09:18	P12516_102_R1.fastq			
-rw-rw	1	5.4G	Sep	10	09:18	P12516_102_R2.fastq			

Content of Content of Section 2 Unix, 1960s, Bell Labs

"Unix philosophy" of creating small, modular utilities that do one thing and do them well.

Commonly used for: working with files and directories; checking file sizes, previewing data, summary statistics

# List directory content									
[olga@rackham3 Fastq]\$ ls -lh									
total 23G									
-rw-rw 1 5.8G	Sep	10	09:18	P12516_101_R1.fastq					
-rw-rw 1 5.8G	Sep	10	09 : 18	P12516_101_R2.fastq					
-rw-rw 1 5.4G	Sep	10	09 : 18	P12516_102_R1.fastq					
-rw-rw 1 5.4G	Sep	10	09 : 18	P12516_102_R2.fastq					

High-performance computers & large-scale storage

Tetralith, NSC, Linköping University

e.g. https://www.uppmax.uu.se

UPPMAX (Uppsala Multidisciplinary Center for Advanced Computational Science) is Uppsala University's resource of high-performance computers, large-scale storage and know-how of high-performance computing (HPC)

Commonly used as: computational infrastructure and project/temporary data storage

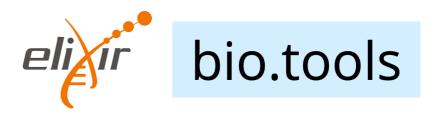
***** Bioinformatics tools

e.g. FastQC, SAMtools, BEDTools

Use samtools to generate stats
samtools stats example.sam

Sort bed file bedutils sort example.bed

Mapping reads to a reference


star --genomeDir /proj/uppstore2019092/NBIS/Index/Star --readFilesIn /proj/snic2019-8-218/private/NBIS/Cutad
apt/v03/Out/FC5_9.trim8.fastq.gz --readFilesCommand zcat --outFileNamePrefix /proj/uppstore2019092/NBIS/Star
/Out/v03/FC5_9/FC5_9_ --runThreadN 4 --outFilterMultimapNmax 999 --outFilterMismatchNmax 3 --outSAMtype SAM
--outSAMunmapped Within --outFilterMultimapScoreRange 1 --seedSearchStartLmax 15

Uppsala Multidisciplinary Center for Advanced Computational Science

enter ... / Resources / Software / Installed Software

Installed Software

https://www.uppmax.uu.se/resources/software/installed-software/

***** Bioinformatics tools

e.g. FastQC, SAMtools, BEDTools

Use samtools to generate stats samtools stats example.sam

Sort bed file bedutils sort example.bed

Mapping reads to a reference

star —_genomeDir /proj/uppstore2019092/NBIS/Index/Star —_readFilesIn /proj/snic2019–8–218/private/NBIS/Cutad apt/v03/Out/FC5_9.trim8.fastq.gz —_readFilesCommand zcat —_outFileNamePrefix /proj/uppstore2019092/NBIS/Star /Out/v03/FC5_9/FC5_9_ —_runThreadN 4 —_outFilterMultimapNmax 999 —_outFilterMismatchNmax 3 —_outSAMtype SAM —_outSAMunmapped Within —_outFilterMultimapScoreRange 1 —_seedSearchStartLmax 15

Database (Oxford). 2014; 2014: bau069. Published online 2014 Jul 14. doi: <u>10.1093/database/bau069</u> PMCID: PMC4095679 PMID: 25024350

OMICtools: an informative directory for multi-omic data analysis

Vincent J. Henry,¹ Anita E. Bandrowski,² Anne-Sophie Pepin,³ Bruno J. Gonzalez,¹ and Arnaud Desfeux^{3,*}

Author information
Article notes
Copyright and License information Disclaimer

This article has been <u>cited by</u> other articles in PMC.

Abstract

Go to: 🖂

Recent advances in 'omic' technologies have created unprecedented opportunities for biological research, but current software and database resources are extremely fragmented. OMICtools is a manually curated metadatabase that provides an overview of more than 4400 web-accessible tools related to genomics, transcriptomics, proteomics and metabolomics. All tools have been classified by omic technologies (next-generation sequencing, microarray, mass spectrometry and nuclear magnetic resonance) associated with published evaluations of tool performance. Information about each tool is derived either from a diverse set of developers, the scientific literature or from spontaneous submissions. OMICtools is expected to serve as a useful didactic resource not only for bioinformaticians but also for experimental researchers and clinicians.

Database URL: http://omictools.com/

https://omictools.com

<u>Sci Data</u>. 2018; 5: 180023. Published online 2018 Feb 27. doi: <u>10.1038/sdata.2018.23</u> Article PMCID: PMC5827688 PMID: 29485625

Datasets2Tools, repository and search engine for bioinformatics datasets, tools and canned analyses

Denis Torre,¹ Patrycja Krawczuk,¹ Kathleen M. Jagodnik,¹ Alexander Lachmann,¹ Zichen Wang,¹ Lily Wang,¹ Maxim V. Kuleshov,¹ and Avi Ma'ayan^{a,1}

Author information Article notes Copyright and License information Disclaimer

This article has been <u>cited by</u> other articles in PMC.

Abstract

Go to: 🖂

Biomedical data repositories such as the Gene Expression Omnibus (GEO) enable the search and discovery of relevant biomedical digital data objects. Similarly, resources such as OMICtools, index bioinformatics tools that can extract knowledge from these digital data objects. However, systematic access to pregenerated 'canned' analyses applied by bioinformatics tools to biomedical digital data objects is currently not available. Datasets2Tools is a repository indexing 31,473 canned bioinformatics analyses applied to 6,431 datasets. The Datasets2Tools repository also contains the indexing of 4,901 published bioinformatics software tools, and all the analyzed datasets. Datasets2Tools enables users to rapidly find datasets, tools, and canned analyses through an intuitive web interface, a Google Chrome extension, and an API. Furthermore, Datasets2Tools provides a platform for contributing canned analyses, datasets, and tools, as well as evaluating these digital objects according to their compliance with the findable, accessible, interoperable, and reusable (FAIR) principles. By incorporating community engagement, Datasets2Tools promotes sharing of digital resources to stimulate the extraction of knowledge from biomedical research data. Datasets2Tools is freely available from: http://amp.pharm.mssm.edu/datasets2tools.

http://amp.pharm.mssm.edu/datasets2tools/

putting commands together

putting commands together

Main three (interpreted)



biopython

putting commands together

Compiled languages

putting commands together

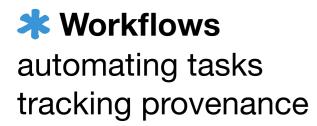
Website development

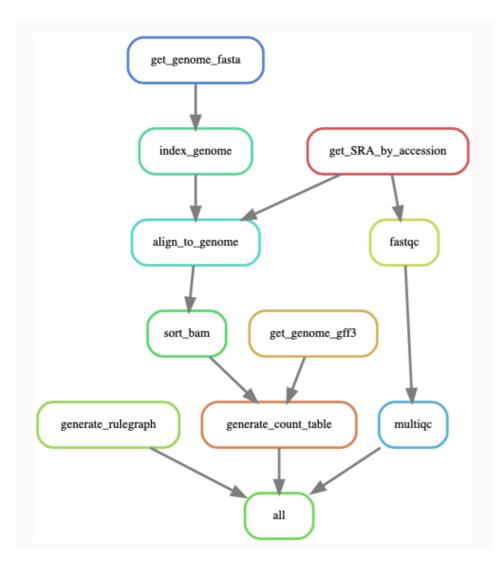
Compiled languages

putting commands together



Website development


putting commands together



Interpreted vs. compiled languages
Script vs. program vs. tool vs. software

Read more: <u>http://omgenomics.com/programming-languages/</u> <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267699/</u>

*** Workflows** automating tasks tracking provenance

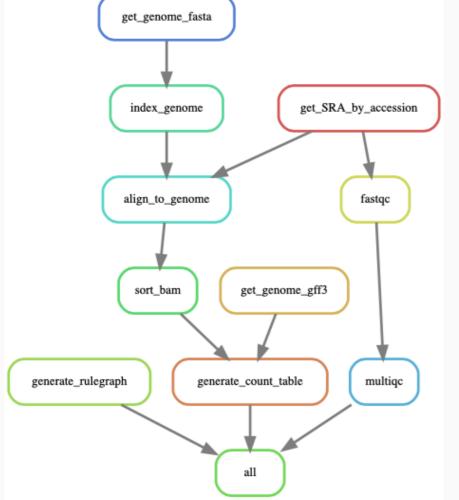
nature > toolbox > article

nature

Subscribe

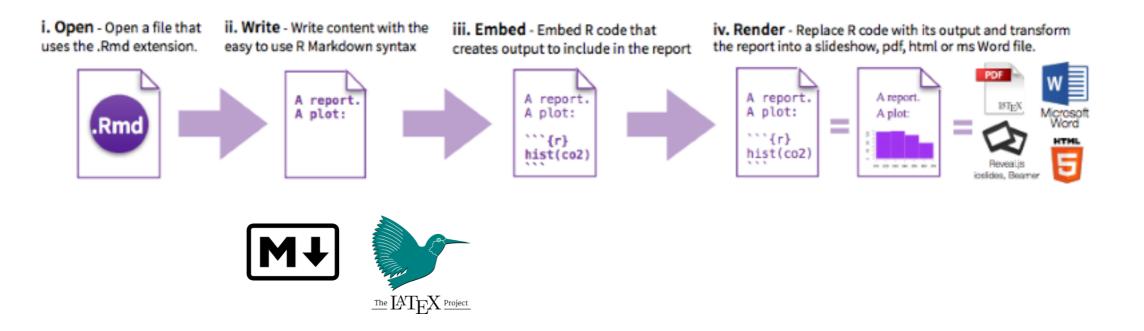
TOOLBOX · 02 SEPTEMBER 2019

MENU 🗸

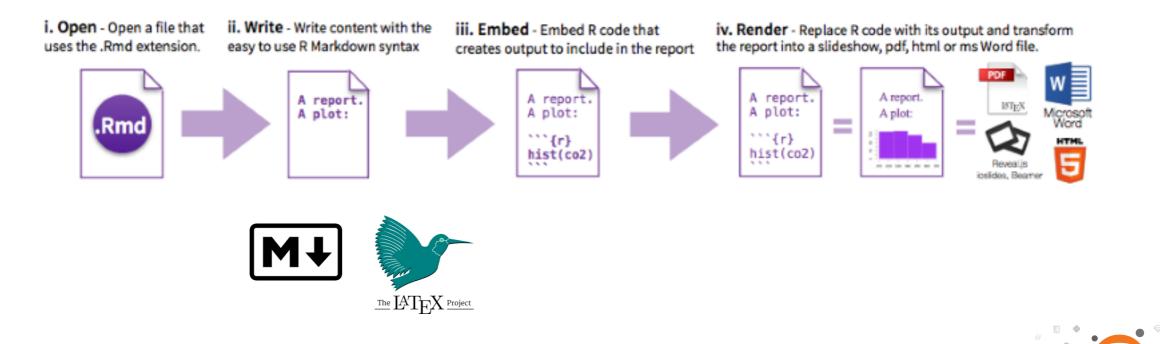

Workflow systems turn raw data into scientific knowledge

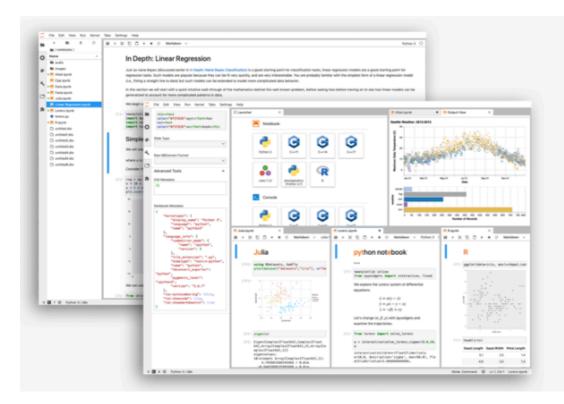
How workflow tools can make your computational methods portable, maintainable, producible and shareable.

Snakemake


– Galaxy

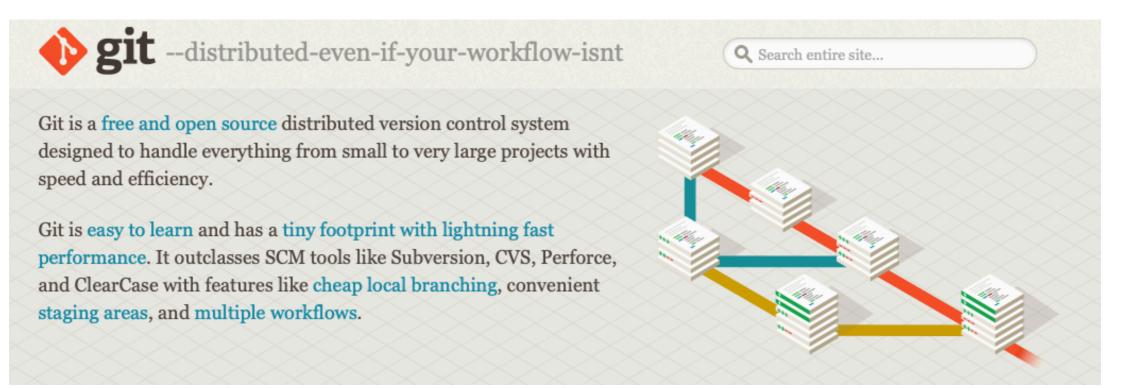
nextflow


* Literate computing & authoring


writing self-contained documents that include narrative and code used to generate both text and graphical results

***** Literate computing & authoring

writing self-contained documents that include narrative and code used to generate both text and graphical results


JupyterLab 1.0: Jupyter's Next-Generation Notebook Interface

JupyterLab is a web-based interactive development environment for Jupyter notebooks, code, and data. JupyterLab is flexible: configure and arrange the user interface to support a wide range of workflows in data science, scientific computing, and machine learning. JupyterLab is extensible and modular: write plugins that add new components and integrate with existing ones.

Try it in your browser Install JupyterLab

* Version control

keeping a record of file changes over time collaborating on a code development

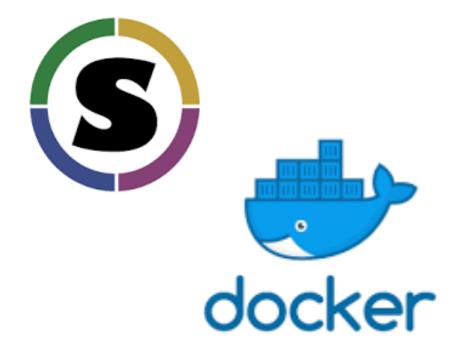
https://git-scm.com

Git repository hosting services

***** Capturing the computational environment

CONDA BIOCONDA®

Package and environment manager


- As a package it enables installing a wide range of tools using one command conda install
- As an environment manager it allows creating and managing multiple different environments, e.g. different versions of the same package

* Capturing the computational environment

CONDA BIOCONDA®

Package and environment manager

- As a package it enables installing a wide range of tools using one command conda install
- As an environment manager it allows creating and managing multiple different environments, e.g. different versions of the same package

Containers

Full control of environment. Can be used to package entire scientific workflows, software, libraries and data, by isolating everything in a "container"

Summary

Team work and project planning

- align on a common goal
- value team members
- communicate

Summary

Team work and project planning

- align on a common goal
- value team members
- communicate

Data sharing & bioinformatics

planning ahead when collecting and describing data

* a min. knowledge of unix skills and bioinformatics terms

Summary

Team work and project planning

- align on a common goal
- value team members
- communicate

Data sharing & bioinformatics

- planning ahead when collecting and describing data
- a min. knowledge of unix skills and bioinformatics terms

Planning ahead:

- reproducible research
- reproducible publications
- sustainability and long-term growth

"Good collaboration checklist"

<u>https://docs.google.com/document/d/</u> 1MpefgEukIXooeo86Q5bX_wjD4RQxMHT9OIY1jEQA2q4/edit?usp=sharing

Thank you!

