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Comparing cells across 
studies/species/conditions…

4Bakken et al. bioRxiv 2020

Several marker genes are 
species-specific

Hodge, Bakken et al. Nature 2019
Keefe & Nowakowski, Nature 2019



Cell identity

5Morris Development 2019



How can we identify cell populations?
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How can we identify cell populations?
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Cytosplore Transcriptomics

8https://transcriptomics.cytosplore.org/Abdelaal et al., bioRxiv 2020

https://transcriptomics.cytosplore.org/


Unsupervised cell identification is problematic
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Time consuming Not reproducible Subjective



Can we automatically identify cell populations?
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Can we automatically identify cell populations?
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Can we automatically identify cell populations?
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Clustering
• Unsupervised learning
• Discovering structure/relations
• Clusters are defined by a decision

boundary

Classification
• Supervised learning
• Prior information available about 

different groups
• Classifiers find descriptions of 

decision boundaries



Classification 
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Classifier training
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• Dataset: for j th cell:
• gene expressions xj
• class label: yj ∈ {1=T,-1=B}

• Classifier:

• Errors:

• Place decision boundary  (i.e. change W) s.t.
E is minimal

xj2

xj1



Instance Based Learning (Lazy Classification)

• Example: Nearest neighbor (k-NN)

• Keep the whole training dataset
• A query example (vector)  comes
• Find closest example(s) 
• Predict 

• No actual training
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Nearest Neighbor (k-NN)

• To make Nearest Neighbor work we 
need 4 things:

1) Distance metric:
2) How many neighbors to look at?
3) Weighting function (optional)
4) How to fit with the local points?
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Nearest Neighbor (k-NN)

• Distance metric:
• Euclidean

• How many neighbors to look at?
• k

• Weighting function (optional):
• Unused

• How to fit with the local points?
• Predict the average output among k nearest 

neighbors
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Effect of k
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Weighted Nearest Neighbor 
(kernel regression)

• Distance metric:
• Euclidean

• How many neighbors to look at?
• All of them (!)

• Weighting function:
• 𝑤𝑤𝑖𝑖 = exp(−𝑑𝑑 𝑥𝑥𝑖𝑖,𝑞𝑞 2

𝐾𝐾𝑤𝑤
)

• Nearby points to query q are weighted more strongly.  Kw:kernel width.
• How to fit with the local points?

• Predict weighted average: 
∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖
∑𝑖𝑖 𝑤𝑤𝑖𝑖
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d(xi, q) = 0
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Comparison: K=1, K=2, kernel
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K=1 K=2 kernel



Support Vector Machine (SVM)
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Support Vector Machine (SVM)
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Support Vector Machine (SVM)
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xj2

xj1

Boundary 1

Boundary 2
Which boundary is 
better?

The one that maximizes the 
margins from both labels. 

i.e. The one whose distance 
to the nearest element of 
each label is the largest.



Can we automatically identify cell populations?
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Can we automatically identify cell populations?
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Can we automatically identify cell populations?
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Can we automatically identify cell populations?
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16 existing classifiers (April 2019)
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scPred
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16 existing classifiers (April 2019)
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16 existing + 6 off-the-shelf classifiers
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Experiment 1: intra-dataset evaluation

• Stratified 5-fold cross validation

• Performance evaluation
• Median F1-score: 𝐹𝐹𝐹 = 2 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

• % unlabelled cells
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Most classifiers work well
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Median F1-score



% Unlabeled

Most classifiers work well
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Median F1-score



Performance drops with deeper annotation
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% UnlabeledMedian F1-score



Performance drops with deeper annotation
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% UnlabeledMedian F1-score



Trade-off between high performance and 
rejecting cells
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% UnlabeledMedian F1-score



Prior knowledge is not beneficial
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% UnlabeledMedian F1-score

Lower 
number of 

classes!



Off-the-shelf SVM outperforms dedicated 
single cell classifiers
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Median F1-score % Unlabeled



Performance depends on dataset complexity

39



Experiment 2: inter-dataset evaluation

• Train on one dataset, evaluate on another

• More realistic scenario

• More challenging, data is not aligned

40
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Experiment 2: inter-dataset evaluation

41Jiarui Ding et al. Nature Biotechnology 2020
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols
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Prediction across protocols



Experiment 3: rejection evaluation
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Experiment 3: rejection evaluation
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Performance 
Summary
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Conclusions so far

• Simple, off-the-shelf classifiers outperform dedicated 
single cell methods (see also Köhler et al. bioRxiv 2019)

• Prior-knowledge does not improve performance (highly 
dependent on selected markers)

• Rejection is difficult

• SnakeMake pipeline: 
https://github.com/tabdelaal/scRNAseq_Benchmark/

54Abdelaal*, Michielsen* et al. Genome Biology 2019

https://github.com/tabdelaal/scRNAseq_Benchmark/


Still, challenges remain

• Incomplete/missing reference atlas
• Inconsistent labels across datasets
• Sharing data is an issue (scArches, Lotfollahi et a;. bioRxiv 2020)
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Hierarchical Progressive Learning

56Michielsen et al. bioRxiv 2020



Hierarchical Progressive Learning

57Michielsen et al. bioRxiv 2020



Hierarchical Progressive Learning

58Michielsen et al. bioRxiv 2020



Tree construction

59
Michielsen et al. bioRxiv 2020

Expected

Constructed



Tree construction
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Michielsen et al. bioRxiv 2020
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Tree construction

61
Michielsen et al. bioRxiv 2020

Expected
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Tree construction

62Michielsen et al. bioRxiv 2020

Expected
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Classification performance

63Michielsen et al. bioRxiv 2020



Summary

• Cell identification is moving from unsupervised 
(clustering/visualization) to supervised (classification) learning

• Comprehensive benchmark of classifiers for single-cell RNA-seq data 
helps both users and developers

• Continuous learning from a growing reference atlas by combining 
multiple annotated datasets into a hierarchical classifier (scHPL)

64



Thank You!

a.mahfouz@lumc.nl
mahfouzlab.org
@ahmedElkoussy

BRAINSCAPES
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