Cell type prediction

Ahmed Mahfouz

Department of Human Genetics, Leiden University Medical Center Pattern Recognition and Bioinformatics, TU Delft

mahfouzlab.org

Comparing cells across studies/species/conditions...

1165 genes

Bakken et al. bioRxiv 2020

Several marker genes are species-specific

Hodge, Bakken et al. Nature 2019 Keefe & Nowakowski, Nature 2019

Cell identity

Morris Development 2019

How can we identify cell populations?

How can we identify cell populations?

Cytosplore Transcriptomics

Abdelaal et al., bioRxiv 2020

https://transcriptomics.cytosplore.org/

Unsupervised cell identification is problematic

Not reproducible

Subjective

Clustering

- Unsupervised learning
- Discovering structure/relations
- Clusters are defined by a decision boundary

Classification

- Supervised learning
- Prior information available about different groups
- Classifiers find descriptions of decision boundaries

Classification

Classifier training

- Dataset: for *j* th cell:
 - gene expressions **x**_i
 - class label: $y_j \in \{1=T, -1=B\}$
- Classifier: $\hat{y}_j = W(x_j)$

• Errors:
$$E = \operatorname{sum}(E_j)$$
 $E_j = \begin{cases} 1 & \text{if } \hat{y}_j \neq y_j \\ 0 & \text{if } \hat{y}_j = y_j \end{cases}$

(

• Place decision boundary (i.e. change W) s.t. E is minimal

Instance Based Learning (Lazy Classification)

- Example: Nearest neighbor (k-NN)
- Keep the whole training dataset
- A query example (vector) comes
- Find closest example(s)
- Predict
- No actual training

Nearest Neighbor (k-NN)

- To make Nearest Neighbor work we need 4 things:
- 1) Distance metric:
- 2) How many neighbors to look at?
- 3) Weighting function (optional)
- 4) How to fit with the local points?

Nearest Neighbor (k-NN)

- Distance metric:
 - Euclidean
- How many neighbors to look at?
 - k
- Weighting function (optional):
 - Unused
- How to fit with the local points?
 - Predict the average output among k nearest neighbors

Effect of k

Weighted Nearest Neighbor

(kernel regression)

- Distance metric:
 - Euclidean
- How many neighbors to look at?
 - All of them (!)
- Weighting function:

•
$$w_i = \exp(-\frac{d(x_i,q)^2}{K_w})$$

- Nearby points to query q are weighted more strongly. K_w :kernel width.
- How to fit with the local points?
 - Predict weighted average: $\frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}}$

$$d(x_i, q) = 0$$

Comparison: K=1, K=2, kernel

Support Vector Machine (SVM)

Support Vector Machine (SVM)

Which boundary is better?

Support Vector Machine (SVM)

Which boundary is better?

The one that maximizes the margins from both labels.

i.e. The one whose distance to the nearest element of each label is the largest.

16 existing classifiers (April 2019)

16 existing classifiers (April 2019)

16 existing + 6 off-the-shelf classifiers

Experiment 1: intra-dataset evaluation

• Stratified 5-fold cross validation

- Performance evaluation
 - Median F1-score: $F1 = 2 \frac{precision.recall}{precision+recall}$
 - % unlabelled cells

Most classifiers work well

Median F1-score

Most classifiers work well

Median F1-score

% Unlabeled

		F	CellBench				
SVM _{rejection} -	2.3	1.5	1.6	1.9	0	0	0
scPred-	6.7	10.8	8.5	10	11.1	0.4	1.1
SVM-	0	0	0	0	0	0	0
singleCellNet-	0.1	0	0	0	0	0	0
ACTINN-	0	0	0	0	0	0	0
CaSTLe-	0	0	0	0	0	0	0
scmapcell-	5.8	4.2	3.8	6.4	8.6	0	0
LDA-	0	0	0	0	0	0	0
scmapcluster-	14.6	7.9	1.1	3.6	4	0	0.2
RF-	0	0	0	0	0	0	0
SingleR -	0	0	0	0	0	0	0
LAmbDA-	0	0	0	0	0	0	0
NMC-	0	0	0	0	0	0	0
CHETAH-	0.5	0.5	0.9	1.1	0.6	0.1	0
scVI-	0	0	0	0	0	0	0
scID-	23.6	8.3	17.3	32.1	0.2	24.2	9.8
Cell_BLAST-	20.3	3.2	19.6	23.1	4.1	0.1	68.1
kNN-	0	0	0	0	0	0	0
SCINA-							
DigitalCellSorter-							
Garnett _{CV} -							
Garnett _{pretrained} -							
Moana-							
Garnett _{DE} -							
SCINA _{DE} -							
DigitalCellSorter _{DE} -							
	Baron Mouse-	Baron Human-	Muraro-	Segerstolpe-	Xin-	10X-	CEL-Seq2-
			Unial	beled ('	%)		
	0		25	50	75	1	00

Performance drops with deeper annotation

Median F1-score

% Unlabeled

34

Performance drops with deeper annotation

Median F1-score

% Unlabeled

Unlabeled (%) 25 50 75 100

Trade-off between high performance and rejecting cells Median F1-score % Unlabeled

100

Median F1-score

Prior knowledge is not beneficial

1

% Unlabeled

•

Lower

classes!

Median F1-score PBMC SVM_{rejection} 0.99 0.92 scPred 0.96 SVM 0.95 0.7

Off-the-shelf SVM outperforms dedicated single cell classifiers Median F1-score % Unlabeled

		Pancreas		CellBench TM		Allen Mouse Brain		PBMC						
	SVM _{rejection} -	0.99	0.99	0.98	1	0.98	1	1	0.99	1	1	0.98	0.99	0.92
	scPred-	1	0.98	0.98	1	0.95	1	1	0.97	1	1	0.69	0.96	
	SVM-	0.98	0.98	0.97	1	0.99	1	1	0.98	1	0.99	0.89	0.95	0.7
	singleCellNet-	0.97	0.96	0.97	0.99	1	1	1	0.94	1	0.99	0.87	0.88	0.74
	ACTINN-	0.97	0.98	0.97	1	0.95	1	1	0.97	1	0.99	0.86	0.88	0.74
	CaSTLe-	0.93	0.94	0.96	0.98	0.96	1	0.99	0.94	1	0.99	0.79	0.84	0.79
	scmapcell-	0.98	0.98	0.97	1	0.73	1	1	0.98	1	1	0.91	0.73	0.64
	LDA-	0.94	0.97	0.96	0.99	0.89	1	1	0.95	1	0.99	0.88	0.63	0.66
	scmapcluster-	0.99	0.95	0.97	1	1	1	1	0.87	1	0.98	0.88	0.73	0.44
	RF-	0.94	0.94	0.96	0.98	0.85	1	1	0.91	1	0.99	0.73	0.81	0.66
	SingleR -	0.96	0.97	0.95	0.97	0.99	1	1	0.88	1	0.97	0.86	0.66	0.32
	LAmbDA-	0.92	0.8	0.95	0.96	0.97	1	1	0.62	1	0.99	0.84		0.4
	NMC-	0.92	0.91	0.84	0.93	0.99	0.92	0.9	0.69	0.99	0.97	0.81	0.71	0.55
	CHETAH-	0.91	0.94	0.96	0.97	0.96	1	1	0.83	1	0.96	0.81	0.65	0.11
	scVI-	0.98	0.56	0.97	0.99	1	1	1	0	1	0.97	0	0.97	0.64
	scID-	0.75	0.59	0.95	0.85	0.8	1	1	0.42	1	0.95	0.63	0.61	0.42
	Cell_BLAST-	0.11	0.89	0.79	0.08	0.63	1	0.99	0.97	1	0.99	0.76	0.91	0.74
	kNN-	0.91	0.95	0.95	0.85	0.03	1	0.98	0.92	1	0.64	0.13	0.45	0.54
	SCINA-												1*	1*
[DigitalCellSorter-												0.99*	0.78*
	Garnett _{CV} -												0.94*	0.6*
	Garnett _{pretrained} -												0.98*	0.54*
	Moana-												0.93*	0.5*
	Garnett _{DE} -												0.65	0.37
	SCINA _{DE} -												0.38	0.47
Dig	italCellSorter _{DE} -												0	0
		Baron Mouse-	Baron Human-	Muraro-	Segerstolpe-	- vix	-V01	CEL-Seq2-	score	AMB3-	AMB16-	AMB92-	Zheng sorted -	Zheng 68K-
						0	0.25	0.5	0.7	5	1			

Pancreas CellBench TΜ Allen Mouse Brain PBMC SVM_{rejection}-23.5 61.8 0.4 scPred 10.8 61.9 SVMsingleCellNet ACTINN-CaSTLescmapcell-8.6 58.2 70.2 LDA-20.2 scmapcluster-RF SingleR-LAmbDA-0 NMC-10.9 CHETAHscVI 0.2 scID-Cell BLAST 68.1 kNN-0 SCINA DigitalCellSorter Garnett_{CV} 70 Garnettpretrained 55.2 Moana Garnett 50.9 SCINA_{DE} DigitalCellSorter Zheng 68K-Seq2-AMB3-AMB16-AMB92sorted-Muraro rstolpe Xin 10X Σ Baron Mouse **Baron Human** Zheng Ы (n Unlabeled (%)

25

75

50

100

Performance depends on dataset complexity

Experiment 2: inter-dataset evaluation

- Train on one dataset, evaluate on another
- More realistic scenario
- More challenging, data is not aligned

Experiment 2: inter-dataset evaluation

Jiarui Ding et al. Nature Biotechnology 2020

Training set

SM2 -SM2 -CL -DR -ID -SW -

SM2 -10XV3 -CL -DR iD -SW -SW -10XV2 - Training set

Lest set

Experiment 3: rejection evaluation

Experiment 3: rejection evaluation

Performance Summary

53

Conclusions so far

- Simple, off-the-shelf classifiers outperform dedicated single cell methods (see also Köhler et al. bioRxiv 2019)
- Prior-knowledge does not improve performance (highly dependent on selected markers)
- Rejection is difficult
- SnakeMake pipeline: <u>https://github.com/tabdelaal/scRNAseq_Benchmark/</u>

Abdelaal*, Michielsen* et al. Genome Biology 2019

Still, challenges remain

- Incomplete/missing reference atlas
- Inconsistent labels across datasets
- Sharing data is an issue (scArches, Lotfollahi et a;. bioRxiv 2020)

Hierarchical Progressive Learning

Hierarchical Progressive Learning

Hierarchical Progressive Learning

Tree construction

Cell population	Batch1 eQTL	Batch2 Bench 10Xv2	Batch3 FACS
CD19+ B	812	676	2,000
Monocytes (MC)		1,194	
CD14+	2,081		2,000
CD16+	274		
CD4+ T	13,523	1,458	
Reg.			2,000
Naive			2,000
Memory			2,000
CD8+ T	4,195	2,128	
Naive			2,000
Megakaryocyte (MK)	142	433	
NK cell		429	2,000
CD56+ bright	355		
CD56+ dim	2,415		
Dendritic			
Plasmacytoid (pDC)	101		
Myeloid (mDC)	455		
CD34+			2,000

Tree construction

Cell population	Batch1 eQTL	Batch2 Bench 10Xv2	Batch3 FACS
CD19+ B	812	676	2,000
Monocytes (MC)		1,194	
CD14+	2,081		2,000
CD16+	274		
CD4+ T	13,523	1,458	
Reg.			2,000
Naive			2,000
Memory			2,000
CD8+ T	4,195	2,128	
Naive			2,000
Megakaryocyte (MK)	142	433	
NK cell		429	2,000
CD56+ bright	355		
CD56+ dim	2,415		
Dendritic			
Plasmacytoid (pDC)	101		
Myeloid (mDC)	455		
CD34+			2,000

Tree construction

Cell population	Batch1 eQTL	Batch2 Bench 10Xv2	Batch3 FACS
CD19+ B	812	676	2,000
Monocytes (MC)		1,194	
CD14+	2,081		2,000
CD16+	274		
CD4+ T	13,523	1,458	
Reg.			2,000
Naive			2,000
Memory			2,000
CD8+ T	4,195	2,128	
Naive			2,000
Megakaryocyte (MK)	142	433	
NK cell		429	2,000
CD56+ bright	355		
CD56+ dim	2,415		
Dendritic			
Plasmacytoid (pDC)	101		
Myeloid (mDC)	455		
CD34+			2,000

Classification performance

Cell population	Batch1 eQTL	Batch2 Bench 10Xv2	Batch3 FACS	Testset Bench 10Xv3
CD19+ B	812	676	2,000	346
Monocytes (MC)		1,194		
CD14+	2,081		2,000	354
CD16+	274			98
CD4+ T	13,523	1,458		960
Reg.			2,000	
Naive			2,000	
Memory			2,000	
CD8+ T	4,195	2,128		962
Naive			2,000	
Megakaryocyte (MK)	142	433		270
NK cell		429	2,000	194
CD56+ bright	355			
CD56+ dim	2,415			
Dendritic				38
Plasmacytoid (pDC)	101			
Myeloid (mDC)	455			
CD34+			2,000	

Summary

- Cell identification is moving from unsupervised (clustering/visualization) to supervised (classification) learning
- Comprehensive benchmark of classifiers for single-cell RNA-seq data helps both users and developers
- Continuous learning from a growing reference atlas by combining multiple annotated datasets into a hierarchical classifier (scHPL)

