In this tutorial, we will be using 3 publicly available dataset downloaded from 10X Genomics repository. They can be downloaded using the following bash commands. Simply create a folder called data
and then use curl
to pull the data from the 10X database.
mkdir -p data
curl -o data/pbmc_1k_v2_filtered_feature_bc_matrix.h5 -O http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_v2/pbmc_1k_v2_filtered_feature_bc_matrix.h5
curl -o data/pbmc_1k_v3_filtered_feature_bc_matrix.h5 -O http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_v3/pbmc_1k_v3_filtered_feature_bc_matrix.h5
curl -o data/pbmc_1k_protein_v3_filtered_feature_bc_matrix.h5 -O http://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_protein_v3/pbmc_1k_protein_v3_filtered_feature_bc_matrix.h5
With data in place, now we can start loading libraries we will use in this tutorial.
suppressMessages(require(scater))
suppressMessages(require(scran))
suppressMessages(require(cowplot))
suppressMessages(require(org.Hs.eg.db))
We can first load the data individually by reading directly from HDF5 file format (.h5). Note that among those , the dataset p3.1k actually has both gene expression and CITE-seq data, so we will use only the Gene Expression
here.
v3.1k <- Seurat::Read10X_h5("data/pbmc_1k_v3_filtered_feature_bc_matrix.h5", use.names = T)
v2.1k <- Seurat::Read10X_h5("data/pbmc_1k_v2_filtered_feature_bc_matrix.h5", use.names = T)
p3.1k <- Seurat::Read10X_h5("data/pbmc_1k_protein_v3_filtered_feature_bc_matrix.h5", use.names = T)
## Genome matrix has multiple modalities, returning a list of matrices for this genome
We can now load the expression matricies into objects and then merge them into a single merged object. Each analysis workflow (Seurat, Scater, Scranpy, etc) has its own way of storing data. We will add dataset labels as cell.ids just in case you have overlapping barcodes between the datasets. After that we add a column Chemistry
in the metadata for plotting later on.
## [1] 33538 2931
## Warning in .local(object, ...): using library sizes as size factors
Here it is how the count matrix and the metatada look like for every cell.
#Adding metadata
sce@colData$sample_id <- unlist(sapply(c("v3.1k","v2.1k","p3.1k"),function(x) rep(x,ncol(get(x)))))
sce@colData$nCount <- Matrix::colSums(counts(sce))
sce@colData$nFeatures <- Matrix::colSums(counts(sce)>0)
sce@colData$size_factors <- scater::librarySizeFactors(sce)
sce <- calculateQCMetrics(sce)
head(sce@colData,10)
## DataFrame with 10 rows and 13 columns
## sample_id nCount nFeatures size_factors is_cell_control total_features_by_counts
## <character> <numeric> <integer> <numeric> <logical> <integer>
## AAACCCAAGGAGAGTA-1 v3.1k 8288 2620 1.35511215206541 FALSE 2620
## AAACGCTTCAGCCCAG-1 v3.1k 5512 1808 0.901228062522265 FALSE 1808
## AAAGAACAGACGACTG-1 v3.1k 4283 1562 0.700282981092682 FALSE 1562
## AAAGAACCAATGGCAG-1 v3.1k 2754 1225 0.450287025432931 FALSE 1225
## AAAGAACGTCTGCAAT-1 v3.1k 6592 1831 1.07781120975087 FALSE 1831
## AAAGGATAGTAGACAT-1 v3.1k 8845 2048 1.44618327521942 FALSE 2048
## AAAGGATCACCGGCTA-1 v3.1k 5344 1589 0.873759572953371 FALSE 1589
## AAAGGATTCAGCTTGA-1 v3.1k 12683 3423 2.07370745953735 FALSE 3423
## AAAGGATTCCGTTTCG-1 v3.1k 15917 3752 2.60247588373855 FALSE 3752
## AAAGGGCTCATGCCCT-1 v3.1k 7262 1759 1.18735816219824 FALSE 1759
## log10_total_features_by_counts total_counts log10_total_counts pct_counts_in_top_50_features
## <numeric> <numeric> <numeric> <numeric>
## AAACCCAAGGAGAGTA-1 3.4184670209466 8288 3.91850213963617 35.2919884169884
## AAACGCTTCAGCCCAG-1 3.25743856685981 5512 3.74138799247927 39.3142235123367
## AAAGAACAGACGACTG-1 3.19395897801919 4283 3.63184946215982 39.084753677329
## AAAGAACCAATGGCAG-1 3.0884904701824 2754 3.4401216031878 36.4197530864198
## AAAGAACGTCTGCAAT-1 3.26292546933183 6592 3.8190830757437 42.8549757281553
## AAAGGATAGTAGACAT-1 3.31154195840119 8845 3.94674693503358 46.8739400791408
## AAAGGATCACCGGCTA-1 3.20139712432045 5344 3.7279477095448 42.0284431137725
## AAAGGATTCAGCTTGA-1 3.53453375600512 12683 4.10325623335505 31.5382795868485
## AAAGGATTCCGTTTCG-1 3.57437856441308 15917 4.20188850036597 35.6474209964189
## AAAGGGCTCATGCCCT-1 3.24551266781415 7262 3.8611160441614 48.5403470118425
## pct_counts_in_top_100_features pct_counts_in_top_200_features pct_counts_in_top_500_features
## <numeric> <numeric> <numeric>
## AAACCCAAGGAGAGTA-1 44.5704633204633 54.1747104247104 67.4107142857143
## AAACGCTTCAGCCCAG-1 54.4992743105951 63.9695210449927 75.8345428156749
## AAAGAACAGACGACTG-1 51.4826056502451 61.5923418164838 75.2042960541676
## AAAGAACCAATGGCAG-1 47.2403776325345 58.3514887436456 73.6746550472041
## AAAGAACGTCTGCAAT-1 58.1310679611651 67.7639563106796 78.5345873786408
## AAAGGATAGTAGACAT-1 64.4205765969474 71.8598078010175 80.5992085924251
## AAAGGATCACCGGCTA-1 58.9446107784431 67.7956586826347 79.6220059880239
## AAAGGATTCAGCTTGA-1 42.9078293779074 54.1906489001025 66.8532681542222
## AAAGGATTCCGTTTCG-1 46.3026952315135 56.7255136018094 68.4802412514921
## AAAGGGCTCATGCCCT-1 63.8804736987056 72.6383916276508 82.3189204076012
Having the data in a suitable format, we can start calculating some quality metrics. We can for example calculate the percentage of mitocondrial and ribosomal genes per cell and add to the metadata. This will be helpfull to visualize them across different metadata parameteres (i.e. datasetID and chemistry version). There are several ways of doing this, and here manually calculate the proportion of mitochondrial reads and add to the metadata table.
Citing from “Simple Single Cell” workflows (Lun, McCarthy & Marioni, 2017): “High proportions are indicative of poor-quality cells (Islam et al. 2014; Ilicic et al. 2016), possibly because of loss of cytoplasmic RNA from perforated cells. The reasoning is that mitochondria are larger than individual transcript molecules and less likely to escape through tears in the cell membrane.”
# Way1: Doing it manually
mito_genes <- rownames(sce)[grep("^MT-",rownames(sce))]
sce@colData$percent_mito <- Matrix::colSums(counts(sce)[mito_genes, ]) / sce@colData$nCount
head(mito_genes,10)
## [1] "MT-ND1" "MT-ND2" "MT-CO1" "MT-CO2" "MT-ATP8" "MT-ATP6" "MT-CO3" "MT-ND3" "MT-ND4L" "MT-ND4"
In the same manner we will calculate the proportion gene expression that comes from ribosomal proteins.
ribo_genes <- rownames(sce)[grep("^RP[SL]",rownames(sce))]
sce@colData$percent_ribo <- Matrix::colSums(counts(sce)[ribo_genes, ]) / sce@colData$nCount
head(ribo_genes,10)
## [1] "RPL22" "RPL11" "RPS6KA1" "RPS8" "RPL5" "RPS27" "RPS6KC1" "RPS7" "RPS27A" "RPL31"
Now we can plot some of the QC-features as violin plots.
plot_grid(plotColData(sce,y = "nFeatures",x = "sample_id",colour_by = "sample_id"),
plotColData(sce,y = "nCount",x = "sample_id",colour_by = "sample_id"),
plotColData(sce,y = "percent_mito",x = "sample_id",colour_by = "sample_id"),
plotColData(sce,y = "percent_ribo",x = "sample_id",colour_by = "sample_id"),ncol = 4)
As you can see, the v2 chemistry gives lower gene detection, but higher detection of ribosomal proteins. As the ribosomal proteins are highly expressed they will make up a larger proportion of the transcriptional landscape when fewer of the lowly expressed genes are detected. And we can plot the different QC-measures as scatter plots.
plot_grid(plotColData(sce,x = "nCount" ,y = "nFeatures",colour_by = "sample_id"),
plotColData(sce,x = "percent_mito",y = "nFeatures",colour_by = "sample_id"),
plotColData(sce,x = "percent_ribo",y = "nFeatures",colour_by = "sample_id"),
plotColData(sce,x = "percent_ribo",y = "percent_mito",colour_by = "sample_id"),ncol = 4)
A standard approach is to filter cells with low amount of reads as well as genes that are present in at least a certain amount of cells. Here we will only consider cells with at least 200 detected genes and genes need to be expressed in at least 3 cells. Please note that those values are highly dependent on the library preparation method used.
dim(sce)
selected_c <- colnames(sce)[sce$nFeatures > 200]
selected_f <- rownames(sce)[ Matrix::rowSums(counts(sce)) > 3]
sce.filt <- sce[selected_f , selected_c]
dim(sce.filt)
## [1] 33538 2931
## [1] 16157 2869
Extremely high number of detected genes could indicate doublets. However, depending on the cell type composition in your sample, you may have cells with higher number of genes (and also higher counts) from one cell type.
In these datasets, there is also a clear difference between the v2 vs v3 10x chemistry with regards to gene detection, so it may not be fair to apply the same cutoffs to all of them. Also, in the protein assay data there is a lot of cells with few detected genes giving a bimodal distribution. This type of distribution is not seen in the other 2 datasets. Considering that they are all PBMC datasets it makes sense to regard this distribution as low quality libraries. Filter the cells with high gene detection (putative doublets) with cutoffs 4100 for v3 chemistry and 2000 for v2.
Here, we will filter the cells with low gene detection (low quality libraries) with less than 1000 genes for v2 and < 500 for v2.
high.det.v3 <- sce.filt$nFeatures > 4100
high.det.v2 <- (sce.filt$nFeatures > 2000) & (sce.filt$sample_id == "v2.1k")
# remove these cells
sce.filt <- sce.filt[ , (!high.det.v3) & (!high.det.v2)]
# check number of cells
ncol(sce.filt)
## [1] 2797
Additionally, we can also see which genes contribute the most to such reads. We can for instance plot the percentage of counts per gene.
In scater, you can also use the function plotHighestExprs()
to plot the gene contribution, but the function is quite slow.
#Compute the relative expression of each gene per cell
rel_expression <- t( t(counts(sce.filt)) / Matrix::colSums(counts(sce.filt))) * 100
most_expressed <- sort(Matrix::rowSums( rel_expression ),T)[20:1] / ncol(sce.filt)
par(mfrow=c(1,2),mar=c(4,6,1,1))
boxplot( as.matrix(t(rel_expression[names(most_expressed),])),cex=.1, las=1, xlab="% total count per cell",col=scales::hue_pal()(20)[20:1],horizontal=TRUE)
As you can see, MALAT1 constitutes up to 30% of the UMIs from a single cell and the other top genes are mitochondrial and ribosomal genes. It is quite common that nuclear lincRNAs have correlation with quality and mitochondrial reads, so high detection of MALAT1 may be a technical issue. Let us assemble some information about such genes, which are important for quality control and downstream filtering.
We also have quite a lot of cells with high proportion of mitochondrial and low proportion ofribosomal reads. It could be wise to remove those cells, if we have enough cells left after filtering.
Another option would be to either remove all mitochondrial reads from the dataset and hope that the remaining genes still have enough biological signal.
A third option would be to just regress out the percent_mito
variable during scaling. In this case we had as much as 99.7% mitochondrial reads in some of the cells, so it is quite unlikely that there is much cell type signature left in those.
Looking at the plots, make reasonable decisions on where to draw the cutoff. In this case, the bulk of the cells are below 25% mitochondrial reads and that will be used as a cutoff. We will also remove cells with less than 5% ribosomal reads.
selected_mito <- sce.filt$percent_mito < 0.25
selected_ribo <- sce.filt$percent_ribo > 0.05
# and subset the object to only keep those cells
sce.filt <- sce.filt[, selected_mito & selected_ribo ]
dim(sce.filt)
## [1] 16157 2599
As you can see, there is still quite a lot of variation in percent_mito
, so it will have to be dealt with in the data analysis step. We can also notice that the percent_ribo
are also highly variable, but that is expected since different cell types have different proportions of ribosomal content, according to their function.
Lets plot the same QC-stats another time.
plot_grid(plotColData(sce.filt,y = "nFeatures",x = "sample_id",colour_by = "sample_id"),
plotColData(sce.filt,y = "nCount",x = "sample_id",colour_by = "sample_id"),
plotColData(sce.filt,y = "percent_mito",x = "sample_id",colour_by = "sample_id"),
plotColData(sce.filt,y = "percent_ribo",x = "sample_id",colour_by = "sample_id"),ncol = 4)
We here perform cell cycle scoring. To score a gene list, the algorithm calculates the difference of mean expression of the given list and the mean expression of reference genes. To build the reference, the function randomly chooses a bunch of genes matching the distribution of the expression of the given list. Cell cycle scoring adds three slots in data, a score for S phase, a score for G2M phase and the predicted cell cycle phase.
hs.pairs <- readRDS(system.file("exdata", "human_cycle_markers.rds", package="scran"))
anno <- select(org.Hs.eg.db, keys=rownames(sce.filt), keytype="SYMBOL", column="ENSEMBL")
## 'select()' returned 1:many mapping between keys and columns
ensembl <- anno$ENSEMBL[match(rownames(sce.filt), anno$SYMBOL)]
#Use only genes related to biological process to speed up
#https://www.ebi.ac.uk/QuickGO/term/GO:0007049 = cell cycle (BP,Biological Process)
GOs <- na.omit(select(org.Hs.eg.db, keys=na.omit(ensembl), keytype="ENSEMBL", column="GO"))
## 'select()' returned many:many mapping between keys and columns
GOs <- GOs[GOs$GO == "GO:0007049","ENSEMBL"]
hs.pairs <- lapply(hs.pairs,function(x){ x[rowSums( apply(x, 2, function(i) i %in% GOs)) >= 1,]})
str(hs.pairs)
cc.ensembl <- ensembl[ensembl %in% GOs] #This is the fastest (less genes), but less accurate too
#cc.ensembl <- ensembl[ ensembl %in% unique(unlist(hs.pairs))]
assignments <- cyclone(sce.filt[ensembl %in% cc.ensembl,], hs.pairs, gene.names= ensembl[ ensembl %in% cc.ensembl])
sce.filt$G1.score <- assignments$scores$G1
sce.filt$G2M.score <- assignments$scores$G2M
sce.filt$S.score <- assignments$scores$S
## List of 3
## $ G1 :'data.frame': 6491 obs. of 2 variables:
## ..$ first : chr [1:6491] "ENSG00000100519" "ENSG00000100519" "ENSG00000100519" "ENSG00000100519" ...
## ..$ second: chr [1:6491] "ENSG00000065135" "ENSG00000080345" "ENSG00000101266" "ENSG00000124486" ...
## $ S :'data.frame': 8527 obs. of 2 variables:
## ..$ first : chr [1:8527] "ENSG00000255302" "ENSG00000119969" "ENSG00000179051" "ENSG00000127586" ...
## ..$ second: chr [1:8527] "ENSG00000100519" "ENSG00000100519" "ENSG00000100519" "ENSG00000136856" ...
## $ G2M:'data.frame': 6473 obs. of 2 variables:
## ..$ first : chr [1:6473] "ENSG00000100519" "ENSG00000136856" "ENSG00000136856" "ENSG00000136856" ...
## ..$ second: chr [1:6473] "ENSG00000146457" "ENSG00000007968" "ENSG00000101265" "ENSG00000147526" ...
We can now plot a violin plot for the cell cycle scores as well.
plot_grid(plotColData(sce.filt,y = "G2M.score",x = "G1.score",colour_by = "sample_id"),
plotColData(sce.filt,y = "G2M.score",x = "sample_id",colour_by = "sample_id"),
plotColData(sce.filt,y = "G1.score",x = "sample_id",colour_by = "sample_id"),
plotColData(sce.filt,y = "S.score",x = "sample_id",colour_by = "sample_id"),ncol = 4)
## Warning: Removed 376 rows containing missing values (geom_point).
## Warning: Removed 304 rows containing non-finite values (stat_ydensity).
## Warning: Removed 304 rows containing missing values (position_quasirandom).
## Warning: Removed 325 rows containing non-finite values (stat_ydensity).
## Warning: Removed 325 rows containing missing values (position_quasirandom).
## Warning: Removed 136 rows containing non-finite values (stat_ydensity).
## Warning: Removed 136 rows containing missing values (position_quasirandom).
In this case it looks like we only have a few cycling cells in the datasets. # Save data Finally, lets save the QC-filtered data for further analysis.
#CELLCYCLE_ALL4:
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: macOS 10.15
##
## Matrix products: default
## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
## LAPACK: /Users/asbj/miniconda3/envs/sc_course/lib/R/lib/libRblas.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] igraph_1.2.4.1 pheatmap_1.0.12 venn_1.7
## [4] umap_0.2.3.1 rafalib_1.0.0 DropletUtils_1.2.1
## [7] org.Hs.eg.db_3.7.0 AnnotationDbi_1.44.0 cowplot_1.0.0
## [10] scater_1.10.1 ggplot2_3.2.1 scran_1.10.1
## [13] SingleCellExperiment_1.4.0 SummarizedExperiment_1.12.0 DelayedArray_0.8.0
## [16] matrixStats_0.55.0 Biobase_2.42.0 GenomicRanges_1.34.0
## [19] GenomeInfoDb_1.18.1 IRanges_2.16.0 S4Vectors_0.20.1
## [22] BiocGenerics_0.28.0 BiocParallel_1.16.6 Seurat_3.0.1
## [25] RJSONIO_1.3-1.2 optparse_1.6.4
##
## loaded via a namespace (and not attached):
## [1] backports_1.1.5 plyr_1.8.4 lazyeval_0.2.2 splines_3.5.1
## [5] listenv_0.7.0 digest_0.6.23 htmltools_0.4.0 viridis_0.5.1
## [9] gdata_2.18.0 magrittr_1.5 memoise_1.1.0 cluster_2.1.0
## [13] ROCR_1.0-7 limma_3.38.3 globals_0.12.4 R.utils_2.9.0
## [17] colorspace_1.4-1 blob_1.2.0 ggrepel_0.8.1 xfun_0.11
## [21] dplyr_0.8.3 crayon_1.3.4 RCurl_1.95-4.12 jsonlite_1.6
## [25] zeallot_0.1.0 survival_2.44-1.1 zoo_1.8-6 ape_5.3
## [29] glue_1.3.1 gtable_0.3.0 zlibbioc_1.28.0 XVector_0.22.0
## [33] Rhdf5lib_1.4.3 future.apply_1.3.0 HDF5Array_1.10.1 scales_1.0.0
## [37] DBI_1.0.0 edgeR_3.24.3 bibtex_0.4.2 Rcpp_1.0.3
## [41] metap_1.1 viridisLite_0.3.0 reticulate_1.13 bit_1.1-14
## [45] rsvd_1.0.2 SDMTools_1.1-221.1 tsne_0.1-3 htmlwidgets_1.5.1
## [49] httr_1.4.1 getopt_1.20.3 gplots_3.0.1.1 RColorBrewer_1.1-2
## [53] ica_1.0-2 pkgconfig_2.0.3 R.methodsS3_1.7.1 locfit_1.5-9.1
## [57] dynamicTreeCut_1.63-1 labeling_0.3 tidyselect_0.2.5 rlang_0.4.2
## [61] reshape2_1.4.3 munsell_0.5.0 tools_3.5.1 RSQLite_2.1.2
## [65] ggridges_0.5.1 evaluate_0.14 stringr_1.4.0 yaml_2.2.0
## [69] npsurv_0.4-0 knitr_1.26 bit64_0.9-7 fitdistrplus_1.0-14
## [73] caTools_1.17.1.2 purrr_0.3.3 RANN_2.6.1 pbapply_1.4-2
## [77] future_1.15.1 nlme_3.1-141 R.oo_1.23.0 hdf5r_1.2.0
## [81] compiler_3.5.1 rstudioapi_0.10 beeswarm_0.2.3 plotly_4.9.1
## [85] png_0.1-7 lsei_1.2-0 tibble_2.1.3 statmod_1.4.32
## [89] stringi_1.4.3 RSpectra_0.15-0 lattice_0.20-38 Matrix_1.2-17
## [93] vctrs_0.2.0 pillar_1.4.2 lifecycle_0.1.0 Rdpack_0.11-0
## [97] lmtest_0.9-37 BiocNeighbors_1.0.0 data.table_1.11.6 bitops_1.0-6
## [101] irlba_2.3.3 gbRd_0.4-11 R6_2.4.1 KernSmooth_2.23-15
## [105] gridExtra_2.3 vipor_0.4.5 codetools_0.2-16 MASS_7.3-51.4
## [109] gtools_3.8.1 assertthat_0.2.1 rhdf5_2.26.2 openssl_1.1
## [113] withr_2.1.2 sctransform_0.2.0 GenomeInfoDbData_1.2.0 mgcv_1.8-29
## [117] grid_3.5.1 tidyr_1.0.0 rmarkdown_1.17 DelayedMatrixStats_1.4.0
## [121] Rtsne_0.15 ggbeeswarm_0.6.0