
Spatial	Transcriptomics		
and	spatial	mapping	of	single	cells	

Stefania	Giacomello	



Cells		 Space	
?	



Observe	
(Histology)		

Ståhl	P,	Science,	2016	

Cells Space 
?	



Measure	
(RNA-Seq)		

Cells Space 
?	



Measure	
(single-cell	RNA-Seq)		

Cells Space 
?	



Measure	
(single-cell		
RNA-Seq)		

Measure	
(RNA-Seq)		

Observe	
(Histology)		

Gene	
expression	

Space	

Massively	
Parallel	

Objective	

High	
resolution	



Measure	
(single-cell		
RNA-Seq)		

Measure	
(RNA-Seq)		

Observe	
(Histology)		

Gene	
expression	

Space	

Massively	
Parallel	

Objective	

High	
resolution	



Measure	
(single-cell		
RNA-Seq)		

Measure	
(RNA-Seq)		

Observe	
(Histology)		

Gene	
expression	

Space	

Massively	
Parallel	

Objective	

High	
resolution	



Measure	
(single-cell		
RNA-Seq)		

Measure	
(RNA-Seq)		

Observe	
(Histology)		

Gene	
expression	

Space	

Massively	
Parallel	

Objective	

High	
resolution	



§  Experimental	approaches		
	-	ISS	(Ke	R	et	al.,	Nature	Methods,	2013)	
	-	FISSEQ	(Lee	JH	et	al.,	Science,	2014)	
	-	MERFISH	(Chen	KH	et	al.,	Science,	2015),	SeqFISH	 	(Lubeck	
	E	et	al.,	Nature	Methods,	2014)	
	-	Spatial	Transcriptomics	(Ståhl	et	al.,	Science,	2016)	
	-	STARmap	(Wang	X	et	al.,	Science,	2018)	
		

§  Computational	methods		
	-	Seurat	(Satija	R	et	al,	Nature	Biotech,	2015)	
	-	DistMap	(Karaiskos	N	et	al,	Science,	2017)	
	-	novoSpaRc	(Nitzan	M	et	al,	bioRxiv,	2018)	
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Seurat 

	
§  Applied	to	zebrafish	embryo		

§  Seurat	combines	cells’	gene	expression	profiles	(scRNA-seq)	
with	a	set	of	‘landmark’	genes	(in	situ	hybridization)	to	
guide	spatial	assignment	

	



Seurat 

§  47	ISH	genes	

§  128	bins	(64	L-R	symmetry)	
	~40–120	cells	per	bin,	
from	in	situ	expression	domain		
	
§  851	single	cells		
	
	



Seurat 

§  47	ISH	genes	

§  128	bins	(each	~40–120	cells),	based	on	in	situ	expression	
domain	à	64	bins	due	to	left-right	symmetry	

§  851	single	cells	(no	cells	with	less	than	2000	genes)	
	
	



Seurat – pros & cons 

§  Bins	could	be	reduced	to	the	single-cell	level	(each	cell	in	
each	position	has	a	distinct	and	reproducible	gene	
expression	identity	and	position)	

§  Seurat	relies	on	the	spatial	segregation	of	gene	expression	
patterns	to	construct	a	reference	map	à	tissues	such	
tumors	(no	guarantee	of	reproducible	spatial	patterning),	
or	tissues	where	cells	have	highly	similar	expression	
patterns	and	are	spatially	scattered	across	a	tissue	(i.e.	
adult	retina)?	

	
	



DistMap 

§  Reconstruct	the	embryo	and	to	predict	spatial	gene	
expression	approaching	single-cell	resolution	

	
§  Seurat	was	not	giving	enough	resolutionà	obtained	87%	of	

cells	in	the	embryo	are	confidently	resolved	and	depth	
(>8000	genes/cell)	

	



DistMap 

§  in	situ	hybridization	data	for	84	genes,	resulting	in	a	
quantitative	high-resolution	gene	expression	reference	
atlas	with	substantial	combinatorial	complexity		



DistMap 



DistMap – pros & cons 

§  Bins	are	very	small	and	the	number	of	genes	detected	is	
high	

§  Spatial	segregation	of	gene	expression	patterns	to	
construct	a	reference	map	



Wet	lab	approaches	



•  Spatial	detection	of	fetal	marker	genes	expressed	at	low	level	in	adult	human	heart	
tissue	–	Asp	M	et	al.,	Scientific	Reports	2017	

•  Spatially	Resolved	Transcriptomics	Enables	Dissection	of	Genetic	Heterogeneity	in	
Stage	III	Cutaneous	Malignant	Melanoma	– Thrane	K	et	al.,	Cancer	Research	2018	

•  Spatial	maps	of	prostate	cancer	transcriptomes	reveal	an	unexplored	landscape	of	
heterogeneity	– Emelie	Berglund	et	al.,	Nature	Communications	2018	

•  Barcoded	solid-phase	RNA	capture	for	Spatial	Transcriptomics	profiling	in	
mammalian	tissue	sections	– Salmén	F	et	al.,	Nature	Protocols	2018	

•  Preparation	of	plant	tissue	to	enable	Spatial	Transcriptomics	profiling	using	barcoded	
microarrays	– Giacomello	S	&	Lundeberg	J,	Nature	Protocols	2018	

•  Multidimensional	transcriptomics	provides	detailed	information	about	immune	cell	
distribution	and	identity	in	HER2+	breast	tumors	– Salmén	F	et	al.,	bioRxiv	2018	

•  An	Organ-Wide	Gene	Expression	Atlas	of	the	Developing	Human	Heart	–	Asp	M	et	al.,	
Sneak	Peek	2018	

•  Charting	Tissue	Expression	Anatomy	by	Spatial	Transcriptome	Decomposition	– 
Maaskola	J	et	al.,	bioRxiv	2018	

•  Gene	expression	profiling	of	periodontitis-affected	gingival	tissue	by	spatial	
transcriptomics	– Lundmark	A	et	al.,	Scientific	Reports	2018	

	

Spatial Transcriptomics 



Spatial Transcriptomics 

2D gene expression map of a tissue section 

Study functional and developmental aspects



The concept 



The concept 
6.

6 
m

m

~200	M	oligonucleotides	

100 µm diameter

1007 spots in total

6.2 mm

Cleavage site

Amplification + sequencing handle

Spatial barcode spot-specific
ID from 1 to 1007

UMI

polyT region

5’	

3’	



The method 
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The method 

 Tissue removal and release On surface cDNA synthesis

Permeabilization Poly-T capture of transcripts



The method 

Illumina sequencing
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Illumina sequencing

Illumina Adapter Barcode Sequence UMI Poly T Illumina Adapter Transcript Sequence 

Read1 

Read2 



The method 

Alignment and sorting of barcodesIllumina sequencing



The method 

Alignment and sorting of barcodes

Alignment of image and barcoded transcripts

Illumina sequencing



The method 

Ståhl	P,	Science,	2016	



Proof of concept – later diffusion? 

Vertical diffusion Horizontal diffusion

 Fluorescent
cDNA synthesis

 Fluorescent print 
of the tissue morphology
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Proof of concept – no later diffusion 



How	can	we	increase	the	resolution?	



Spatial Transcriptomics + Single-cell RNA-seq 



Spatial Transcriptomics + Single-cell RNA-seq 



Spatial Transcriptomics + Single-cell RNA-seq 



Cell,	1997	

Spatial Transcriptomics + Single-cell RNA-seq 



The approach 

§  single-cell RNA-seq (10X Chromium)  

§  Spatial Transcriptomics 

~3 mm

Clinical age: 6.5w
(~46 days)

~10 mm

Carnegie stage: 18
(44-48 days)



scRNA-seq dataset 
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Biological replicates 
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Each dot 
represents one 
“spot” i.e. 
microdissection   

Spatial gene expression 
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Spatial gene expression 
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Spatial gene expression – subclustering of outflow tract 
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Mapping of single cells on spatial subclusters 
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Spatial cell-state maps 
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