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Trajectory	Inference	(TI)	

•  Cells	that	differentiate	display	a	continuous	
spectrum	of	states	–	transcriptional	program	for	
activation	and	differentiation	

•  Individual	cells	will	differentiate	in	an	
unsynchronized	manner	–	each	cell	is	a	snapshot	of	
differentiation	time		

•  Pseudotime	–	abstract	unit	of	progress:	distance	
between	a	cell	and	the	start	of	the	trajectory		



(Cannoodt	et	al.	EJI	2016)	



Should	you	run	TI?	

•  Are	you	sure	that	you	have	a	developmental	
trajectory?		

•  Do	you	have	intermediate	states?	
•  Do	you	believe	that	you	have	branching	in	your	
trajectory?		

•  Be	aware,	any	dataset	can	be	forced	into	a	trajectory	
without	any	biological	meaning!		

•  First	make	sure	that	gene	set	and	dimensionality	
reduction	captures	what	you	expect.		



TI	tools	–	fast	development!	

(Saleens	et	al.	bioRxiv	2018)	



TI	general	overview	

(Cannoodt	et	al.	EJI	2016)	



TI	–	main	steps	

1.  Gene	set	selection	
2.  Dimensionality	reduction	
3.  Infer	trajectories	(branched	or	straight)		
4.  Order	cells	
5.  Discover	interesting	gene	patterns		



1.	Gene	set	selection	

•  Variable	genes	
•  Differentially	expressed	genes	between	clusters	
•  Prior	knowledge	

•  Be	careful	how	you	select	genes	–	a	more	unbiased	
approach	is	always	better!	



2.	Dimensionality	reduction	

•  Linear:	PCA,	ICA	etc.		
•  Non-linear:	tSNE,	Diffusion	maps,	UMAP	
•  Graph	based	



3.	Infer	trajectories	

•  Many	TI	methods	use	graph-based	techniques		
–  Simplified	graph	representation	as	input	to	find	a	path	
through	a	series	of	nodes	(i.e.	individual	cells	or	groups	of	
cells)		

–  Different	path-finding	algorithms	are	used	by	different	
programs	

–  Find	longest	connected	path	in	a	sparsified	graph	
•  “starting	cell”	often	defined	by	the	user (e.g.	the	

most	immature	cell	in	the	case	of	a	cell	developmental	
process)		
	



4.	Order	cells	

•  Define	pseudotime	based	on	cells	projection/
position	along	trajectory	

	
	

5.	Discover	gene	patterns		
	

•  Statistical	tests	for	regulation	along	pseudotime	
•  Branch	point	analyses	



Methods	overview	

(Saleens	et	al.	bioRxiv	2018)	



Tool	evaluation	
	

(Saleens	et	al.	bioRxiv	2018)	



Pseudotime	ordering	–	Monocle1		
	
	

(Trapnell	et	al.	Nature	Biotech	2014)	



Monocle2	–	reversed	graph	enbedding	

(Qiu	et	al.	Nat	Methods	2017)	



Monocle	3	

•  UMAP	to	initialize	TI	
•  Trajectories	with	multiple	roots,	loops	or	points	of	
convergence	

•  Graph	abstraction	for	TI	
•  New	statistical	test	for	genes	

(http://cole-trapnell-lab.github.io/monocle-release/monocle3/)	



RNA	Velocity		

(La	Manno	et	al.	Nature	2018)		

Use	proportion	spliced/unspliced	reads	to	predict	the	
future	state	of	a	cell			



RNA	Velocity		

(Svensson	&	Pachter,	Molecular	cell	2018)		



RNA	Velocity		

(La	Manno	et	al.	Nature	2018)		



RNA	Velocity		

(La	Manno	et	al.	Nature	2018)		



Trajectories	-	summary	

•  In	reality	distance	in	multidimensional	space	reflects	
difference	in	transcriptional	landscape,	not	actual	
time.		

•  Necessary	to	have	a	continuum	of	states	among	your	
cells	–	will	not	work	with	2	distinct	clusters.	

•  May	work	with	single	time-point	if	ongoing	
differentiation	process	–	better	with	multiple	time	
points.			



Additional	analyses/data	types	
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Brief	overview	of	topics	

•  Single	cell	multi-omics	
•  Allelic	expression	
•  Variant	calling	
•  Alternative	splicing	
•  Copy-number	variation	
•  CRISPR-editing	
		
	



Single	cell	omics	

(Stuart	&	Satija,	Nature	Rev.	Genetics	2019)	



Genome/Methylome	+	transcriptome	

(Maculay	et	al.	Trends	in	Genetics	2017)		



CITE-seq	–	epitope	+	RNAseq	

(Peterson	et	al.	Nature	Biotech.	2017)	



scGESTALT	–	
lineage	tracing	and	cell	profiling	
with		CRISPR-Cas9	editing	of	

barcodes		

(Raj	et	al.	Nature	Biotech	2018)	



Spatial	integration		

•  Spatial	Transcriptomics	
•  smFISH	
•  In	situ	sequencing	
•  starMAP	
•  MERFISH	

(Stuart	&	Satija,	Nature	Rev.	Genetics	2019)	



Single-Cell	RNA-Seq	Reveals	Dynamic,	Random	Monoallelic	Gene	
Expression	in	Mammalian	Cells	

	

(Deng	et	al.	Science	2014)	

Single	cells 	 	 	 	 	 	 	Pooled	embryos					



X	Chromosome	inactivation	

(Petropoulos	et	al.	Cell	2017)	



Using	Single	Nucleotide	Variations	in	Cancer	Single-Cell	RNA-	Seq	
Data	for	Subpopulation	Identification	and	Genotype-	phenotype	

Linkage	Analysis	
	

(Poiron	et	al.	BioRxiv	2016)	
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Multiplexed	droplet	single-cell	RNA-sequencing	using	natural	
genetic	variation	

(Kang	et	al.	Nature	Biotech	2018)	



Dissecting	the	multicellular	ecosystem	of	metastatic	
melanoma	by	single-cell	RNA-seq	

(Tirosh	et	al.	Science	2016)	



Cell	specific	alternative	splicing	

(Shalek	et	al.	Nature	2013)	



(Zhang	et	al	Cell	2016)	



crisprQTL	mapping	
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Fig. 1 | crisprQTL mapping. (A) crisprQTL mapping uses the same framework as human eQTL studies,                               
but with a population of human individuals replaced by a population of individual cells, natural genetic                               
variation replaced by diverse combinations of gRNAprogrammed perturbations in each cell, and                       
tissuelevel RNAseq of each person replaced by scRNAseq.  (B)Multiplex perturbations increase power                         
to detect changes in gene expression in singlecell genetic screens while greatly reducing the number of                               
cells necessary to profile. Simulated power calculations show that increasing the average number of                           
perturbations per cell ( e.g. ,  by increasing MOI in lentiviral delivery of gRNAs) strongly increases power                             
to detect changes in gene expression, including for genes with low (0.10 mean UMIs per cell), medium                                 
(0.32) or high (1.00) levels of mean expression. Xaxis corresponds to the simulated % change of                               
transcript repressed by targeting CRISPRi to the associated enhancer. Calculations assume a fixed number                           
of 45,000 cells profiled by scRNAseq. 
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Large	scale	analysis	

(Svensson	et	al.	Nature	Protocols	2018)	



Large	scale	analysis	

(SCANPY	–	Wolf	et	al.	Genome	Biology	2018)		


