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Why to remove technical variation?

In order to facilitate discovering biological signal

Unaligned datasets

iy UEDARTRE Vionse Batch-effects:
1) dates of sequencing
2) people done sequencing
3) flow-cells / plates
4) chemistry / protocol
5) lanes
6) read length
7) labs produced data
3 8) organisms
9) etc.

100% confounding: put cases
and
controls on different flow-cells

60 30 0 30 60

Normalization: correct for systematic variation in sequencing experiment
1) between samples (e.g. sequencing depth bias)
2) between features (e.g. gene length or GC content)



How to detect technical variation?
Difference in sequencing depth:

Sequncing Depth Across Cohorts
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Genome-Wide Batch-effects:

Color Key
ILC scRNAseq
Adjusted R"2 of Association between PCs and Phenotypes
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Dimension 2
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How to correct for technical variation?

Normalization: normalize by library size (other choices: RPKM, SCnorm, Deconvolution)

Batch-effects: ComBat (supervised), SVA (unsupervised) etc.
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| do not recommend unsupervised batch-effects correction for scRNAseq data

| do not recommend library size normalization for any type of data




ComBat has a lot to do with more modern BASICS

JPLOS |sauseymos

Bayesian framework for scRNAseq analysis:

1) normalization
2) batch correction
3) differential gene expression

4) detection of highly variable genes
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Abstract

Single-cell mRNA sequencing can uncover novel cell-to-cell h ity in gen p!
sion levels in seemingly homogeneous populations of cells. However, these experiments
are prone to high levels of unexplained technical noise, creating new challenges for identify
ing genes that genuine \eous expression within the pop 1 of cells unde
study. BASICS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayes-
ian hierarchical model where: (i) cell-specific normalisation constants are estimated as part
ofth (ii} technical variability is quanti pike-in genes that
are ariificially introduced to each analysed cell's lysate and (i) the total variability of the ex-
pression counts is decomposed into technical and biological components. BASICS also
provides an intuitive detection criterion for highly (or lowly) variable genes within the popula
tion of cells under study. This is formalised by means of tail posterior probabilities associat-
ed to high (orlow) biological cel-to-cell varian ibutions, quantities that can be easily
ir d by users. e method usil pi measurements
from mouse Embryonic Stem Celis. Gross-validation and meaningful enrichment of gene
ontology categories within genes classified as highly (or lowly) variable supports the effica-
cy of ourapproach.

credted

Creafive Commons Atiribusion License, which permils
eesant e il Author Summary
medium, provi g Gene on si have historically been used to ge:
that ck ise distinct tissues. by i ing these molecular sij it

Data Availability Statement: All relevant data are
within he pager and its Suppartng Iformation fies.

has been possible to und d how a tis is regulated at th lecular level.
However, even between cells from a seemingly homogeneous tissue sample, there exists

g i bstantial b ity in ger ion levels. These di might 1to
CMand CAV. 1 sub ient states linked, for example, to the cell cycle. Single-cell RNA-
SRand GAV. The hunders where the ipl of individual cells are profiled using next generation
desin, 5 i, ducksion b ’ vides a method for identifying genes that show more variation across cells
Publish, or preparafon of the manuscipt. than expected by chance, which might be characteristic of such populations. However, sin-
Compstinglnterests: Tha auticrs have decared gle-cell RNA-sequencing is subject to a high degree of technical noise, making it necessary
hatnocampeting intems s exist
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Other Methods for Batch Effects Corrections:
Mutual Nearest Neighbors (MNN)
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Other Methods for Batch Effects Corrections:
Seurat and Canonical Correlation Analysis (CCA)
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Other Methods for Batch Effects Corrections: Projection

scmap-cell
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Other Methods: Do They Work?

UNCORRECTED
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SCMAP

results_assigned<-resultsl[as.character(results$SASSIGNED_LABEL)!="unassigned",]
head(results_assigned, 20)

#i# CELS ASSIGNED LABEL TRUE_LABEL SIMILARITY
## 2 T8B_P1_Ale _TLC3 TILC3 TLC3 0.4457213
## 3 T8e_P1_Al2 ILC3 ILC3 ILC3 ©.4963317
## 7 T86_P1_Bl1_TILC3 ILC3 TILC3 0.4955753
## 8 T86_P1_B12 ILC3 ILC3 ILC3 0.4329544
## 14 T86_P1_B9_HNK NE NK ©0.5676746
## 18 T86_P1_C12 TLC3 ILC3 ILC3 ®@.5136711
## 23 TB6_Pl_Ce_ILC3 TILC3 TLC3 ©.4655949
## 28 T86_P1 D18 TLC3 TLC2 TLC3 8.3970456
## 29 T86_P1_D11_NK NE NK ©.5262334
## 30 T86_P1 D12 TLC3 TLC3 TLC3 8.5897175
## 34 TB6_Pl De_ILC3 ILC3 ILC3 ©.4664650
## 38 T86_P1_El18 TLC3 TLC3 TLC3 08.4750463
## 40 T86_P1_E12 ILC3 ILC3 ILC3 ©.4968623
## 41 TBG6_P1_E2_TILC3 TLC3 TLC3 08.4253116
## 42 TB6_Pl_E3 ILC3 ILC3 ILC3 ©.4706919
## 45 T86_P1_E6_MNK NE NK 8.5219235
## 46 T86_P1_E7_NK NE NK ©.5405412
## 48 TB6_P1_E9 ILC3 TLC3 TLC3 ©.4489822
## 50 T86_P1_Fl10_ILC3 ILC3 ILC3 ©.4821195
## 51 T86_P1_F11 TLC3 ILC3 TLC3 08.4667251

table(results_assigned$ASSIGNED_LABEL, results_assigned$TRUE_LABEL)

##

#i# TLC1 TLCZ TLC3 NK
#H ILC1 65 26 e a
#i# ILC2 e] 2 2 B
#H ILC3 a a 68 @
== NE 2] 2] 0 18
## unassigned 8 8 a a

sum(as.character(results_assigned$ASSIGNED_ LABEL)==as.character(results_assignedS$TRUE_LABEL))/dim(results_assig
ned) [11]

## [1] ©.8381583

We conclude that the accuracy of assignment is 84% which is not fantastic taking into account that SCMAP failed assignment of almost a half of
the cells in the test data set.



Brief Overview of Bulk RNAseq
Normalization Methods:

RPKM, DESeq / TMM



RPKMs (FPKMs)

RPKM normalization is an extension of so-called library size normalization

Library size normalization: scaling such that library size is equal between all libraries

e
RPKM = II?,L

where:

C = number of reads that overlap a given gene
N = library size

L = gene length

Disadvantage: forced equalizing library sizes might eliminate true biological variation



DESeq
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DESeq: create reference library based on geometric mean of all
libraries, calculate size factors as ratios against the reference library
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sCRNAseq - Specific Normalization Methods:
1) Deconvolution (Pooling-Across-Cells)

2) SCnorm (Expression-Depth Relation)



Lots of zero-counts is main challenge in scRNAseq

scRNAseq expression counts have typically ~80% of zero-counts

This is due to: 1) low amounts of RNA per cell, 2) RNA capture efficiency

- O\ High-magnitude
D 3 - . . |outlier
O 1 . B g
.E = . s an * )
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o ¥
i g
g 1
> |Dropout events ¢ Hm
- _ -
0
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Log,,(RPM) in cell 2

We want to correct for sequencing depth and cell-to-cell difference in RNA capture efficiency
3 common normalization methods used for bulk RNAseq: 1) TMM, 2) DESeq, 3) RPKM
Main assumption of all 3 methods: most of the genes are not differentially expressed

TMM and DESeq rely on ratios of counts, therefore diverge when lots of zero-counts



Lun et al. Genome Biology (2016) 1775
01 10.1186/513059-016-0947-7

Deconvolution Normalization Method

Genome Biology

METHOD Open Access

Pooling across cells to normalize

@ Crossiiark

single-cell RNA sequencing data with many

Zero counts

Aaron T.L. Lun'", Karsten Bach? and John C. Marioni'%3"

Abstract

Normalization of single-cell RNA sequencing data i necessary to eliminate cell-specdific biases prior to downstrearn

analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a
novel approach where exprassion values are surmmed across pools of cells, and the summed values are used for
nermalization. Pookbased size factors are then deconvelved to yield cell-based factors. Qurdeconvelution approach
outperforms existing methods for accurate normalization of celkspecific biases in simulated data. Similar behavior is
observed in real data, where deconvolution improves the relevance of results of downstrearn analyses.

Keywords: Single-cell RNA-seq, Normalization, Differential expression

Background

Single-cell RNA sequencing (scRNA-seq) is a powerful
technique that allows researchers to characterize the gene
expression profile of single cells. From each cell, mRNA
is isolated and reverse-transcribed into cDNA, which is
amplified and subjected to massively parallel sequenc-
ing [1]. The sequencing reads are mapped to a reference
genome, such that the number of reads mapped to each
gene can be used to quantify its expression. Alternatively,
transcript molecules can be counted directly using unique
molecular identifiers (UMIs) [2]. Count data can be ana-
lyzed to identify new cell subtypes and to detect highly
variable or differentially expressed (DE) genes between
cell subpopulations. This type of single-cell resolution is
not possible with bulk RNA sequencing of cellular pop-
ulations. However, the downside is that the counts often
contain high levels of technical noise with many dropouts,
i.e, zero or near-zerc values, This is due to the pres-
ence of low amounts of RNA per cell, which decreases
the efficiency with which transcripts can be captured
and processed prior to sequencing. Moreover, the capture

*Comespondence: aaronbundon kamacuk manori@ebiac uk

1 Cancer Research UK Cambridge Irstitute, University of Cambridge, Li Ka
Shing Cente, Robinson Way, CB2 ORE, Cambridge, UK

2EMBL Ewropean Bioinformatics Institute, Wellome Genome Campus,
Hirwton, CB10 150, Cambridge, UK

Full list of author information is available at the end of the artide

() BioMed Central

efficiency often varies from cell to cell, such that counts
cannot be directly compared between cells.

Normalization of the scRNA-seq counts is a critical
step that corrects for cell-to-cell differences in capture
efficiency, sequencing depth, and other technical con-
founders. This ensures that downstream comparisons of
relative expression between cells are valid. Two broad
classes of methods for scaling normalization are available:
those using spike-in RNA sets and those using the counts
from the profiled cellular RNA. In the former, the same
quantity of spike-in RNA is added to each cell prior to
library preparation [1]. Any difference in the coverage of
the spike-in transcripts must be caused by differences in
capture efficiency, amplification bias, or sequencing depth
between cells. Normalization is then performed by scaling
the counts to equalize spike-in coverage between cells, For
the methods using cellular counts, the assumption is that
most genes are not DE across the sampled cells. Counts
are scaled so thatthere is, on average, no fold-difference in
expression between cells for the majority of genes. This is
the underlying concept of commonly used methods such
as DESeq [3] and trimmed mean of M values (TMM) nor-
malization [4]. An even simpler approach involves scaling
the counts to remove differences in library sizes between
cells, i.e, library size normalization.

The type of normalization that can be used depends on
the characteristics of the data set. In some cases, spike-in
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of an arbitrary set of cells 5. Define Vit as the sum of Zy;
across all cells in 8§, which has an expectation of

E(Vi) = hio Y 6"
JES;
The observed values of Vj; across all genes constitute an
overall expression profile for the pool of cells correspond-

ing to S¢. Also define LI; as the mean of Zy across all N
cells in the entire data set, which has an expectation of

EWU)=aoN' Y 67
=S

where &y refers to the set of all cells in the data
set. The observed values of L across all genes rep-
resent the expression profile for an averaged reference
pseudo-cell.

The cell pool £ is then normalized against this reference
pseudo-cell. Define Ry, asthe ratio of Vi to L) forthe non-
DE gene i The expectation of R represents the true size
factor for the pooled cells in S, and is written as

EVe) st
E(U) ~ N-'Ys 6t C
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OO
O
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Fig. 3 Schematic of the decanvalution methad All cellsin the data set are averaged to make a reference pseudo-cell Expression values for cells in
podl A are summed together and nomalized against the reference o yield a pod-based size factor 84, This i equal to the sum of the cell-based
factors 6 for cells j = 1-4 and can be used to formulate a linear equation. (For simplicity, the 1 term is assumed 1o be unity here ) Repeating this for
multiple pooks {e g, pool B) leads o the construction of a linear system that can be solved to estimate & for each cell §




Benchmarking: Deconvolution Method Performs Best
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How does deconvolution normalization method
compare with RPKM and normalizations
by using spike-ins?



Deconvolution vs TMM vs DESeq vs RPKM vs SCnorm: Size Factors

For other data sets it might not look as good as for ILC!
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PCA Plot

PCA PLOT: RPKM COUNTS

PCA PLOT: RAW COUNTS

PCAH

PCAH

PCA PLOT: SCNORM COUNTS

PCA PLOT: DECONVOLUTION COUNTS

PCAH

PCAH

GL 0L G 0 G- 0k G}



tSNE2

tSNE2

20

10

-10

-20

15

10

-10

tSNE Plot

tSNE: RAW COUNTS

tSNE: RPKM COUNTS

10
|

tSNE2
0
]

-10

tSNE2
-10 10
]

-20

-10 0 10 20



PC2

15

10

-10

-15

Cell Cycle Phase Assignment

Pre-trained classifier looks at pairs of genes having difference in expression
that changes sign from phase to phase of cell cycle

PCA PLOT: DECONVOLUTION COUNTS

| G1
oy o g | M G2M
[s2 : H S
o
w250 ® @Oo.o o g M unknown
) o C o [5]
a D oodp 00 0 @
i o. (9 e o o O&cp Q Q
L & o Og & o © <
oo ° A 5 a
= X : o o o o
.0 Q ¢ &, oW, Q
o n ®©o'0 op (e}
o o 8 ol by o
o] o o o
Q g O) o
o 2 o o0
2 <]
( o
g e 8% & o
© o o
2 o o] 9 g oa a
B o 20 & o 4 2 ® o o
o 8 P o
o3) Og el ’ o
o g8% o) B
o Do 90 CP% a
k ] & 0h o C
® O ?0 o OF O g g 2
(a] . o_ 00 o
Bido: ol OFiq g0 s 0L Sohy
o o o @
o o 5 5
g %62 o © e e A
o d °, o g 8o, 00 5
& o5t ze o0 o o Oo
& ;
o o o (=
o
o g ?Q) oo
oo®
T T T T T 1
-30 -20 -10 0 10 20
PC1

tSNE2

10

-10

-20

tSNE: DECONVOLUTION COUNTS

= o % . 20 % = Gi
2] o C el | G2M
@0 &8 Yo ol oo 800 00 ° o _370_00 m S
a @ A (0] o fe) @ ool®Ig
338 2 oo © O%wO__o o] o, B O.o & W unknown
0 adp 0 PFH o » & o
OD o ':"Dd & 0_% 3 @‘C@'OO
9 o .
o Q = e}
go @ @Qoeo . Yoo P g °
Q
o o}
o
g8
s
o & :%
o] 8 >
gl oY 0 & ©fo B0 ‘g: c%
0%, 0 3s] %9 [ ey
c:ooo oo o 0
) o
foofc)
(o) qjo ogo
@ B
s) -
@oo% ZZ@.
%@ o
go
> 86 @% @
» & o
q
%ﬁg%‘ - o
Oo?choo
s} @ 2o
£ F ool
DOOO
T T T T
-20 -10 0 10

ISNE1




Methods for Testing for Differential
Expression without Normalization:

SCDE



Single-Cell Differential Expression (SCDE)
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Bayesian approach to
single-cell differential
expression analysis

Peter V Kharchenko!-3, Lev Silberstein®-% &
David T Scadden®>

Single-cell data provide a means to dissect the composition
of complex tissues and specialized cellular environments.
However, the analysis of such measurements is complicated
by high levels of technical noise and intrinsic biological
variability. We describe a probabilistic model of expression-
magnitude distortions typical of single-cell RNA-sequencing
measurements, which enables detection of differential
expression signatures and identification of subpopulations of
cells in a way that is more tolerant of noise.

Methodological advances are making it possible to examine tran-
scription in individual cellson alarge scalel-4, facilitating unbiased
analysis of cellular states”*. However, profiling the low amounts
of mRNA within individual cells typically requires amplification
by morethan 1 million fold, which leads to severe nonlinear distor-
tions of relative transcript abundance and ac lation of nonsp
cific byproducts. A low starting amount also makes it more likely
that a transcript will be ‘missed’ during the reverse-transcription
step and consequently not detected during sequencing. This
leads to so-called ‘dropout’ events, in which a gene is observed at
amoderate or high expression level in one cellbut is not detected
in another cell (Fig. 1a). More fundamentally, gene expression is
inherently stochastic, and some cell -to-cell variability will be an
unavoidable consequence of transcriptional bursts of individual
genes or coordinated fluctuations of multigene networks®, Such
biological variability is of high interest, and several methods have
been proposed for detecting it'*!2 Collectively, this multifactorial
variability in single-cell measurements substantially increases the
apparent level of noise, posing challenges for differential expres-
sion and other downstream analyses.

Comparisons of RNA-seq data from individual cells tend to
show higher variability than is typically observed in biclogical
replicates of bulk RNA-seq measurements. In addition to strong
overdispersion, there are high- magnitude outliers as well asdropout
events (Fig. 1a). Such variability is poorly accommodated by

standard RNA-seq analysis methods'*, and the reported sets
of top differentiall y expressed genes can include high-magnitude
outliers or dropout events, showing poor consistency within each
cell population (Fig. 1b). The abundance of dropout events has
been previously noted in single-cell quantitative PCR data and
accommodated with zero-inflated distributions®.

Two prominent characteristics of dropout events make them
informative in further analysis of expression state. First, the overall
dropout rates are consistently higher in some single-cell samples
than in others (Supplementary Figs. 1 and 2), indicating that the
contribution of an individual sample to the downstream cumula-
tive analysis should be weighted accordingly. Second, the dropout
rate for a given cell depends on the average expression magnitude
of a gene in a population, with dropouts being more frequent for
genes with lower expression magnitude. Quantification of such
dependency provides evidence about the true expression mag-
nitude. For instance, dropout of a gene observed at very high
expression magnitudein other cells is more likely to be indicative
of true expression differences than of stochastic variability.

‘We modeled the measurement of each cell as a mixture of two
probabilistic processes—one in which the transcript is amplified
and detected at a level correlating with its abundance and the other
in which a transcript fails to amplify or is not detected for other
reasons. We modeled the first, ‘correlated’ component with a nega-
tive binomial distribution’®-!8, The RN A-seq signal associated with
the second, dropout component could in principle be modeled
as a constant zero (ie., zero-inflated negative binomial process);
however, we used a low-magnitude Poisson process to account for
some background signal that is typically detected for the dropout
and transcriptionally silent genes. Importantly, the mixing ratio
between the correlated and dropout processes depends on the
magnitude of gene expression in a given cell population. We ana-
lyzed two single-cell data sets—a 92-cell set consisting of mouse
embryonic fibroblast (MEF) and embryonic stem (ES) cells? and
adata set of cells from different stages of early mouse embryosi2,
To fit the parameters of an error model for a particular single -cell
measurement, we used a subset of genes for which an expected
expression magnitude within the cell population can be reliably
estimated. Briefly, we analyzed pairs of all other single-cell samples
from the same subpopulation (for example, all MEF cells except
for the one being fit) with a similarly structured three-com ponent
mixture containing one correlated component and dropout com-
ponents for each cell (Fig. 1c and Supplementary Figs. 1 and 2).
‘We deemed a subset of genes appearing in correlated components
in a sufficiently large fraction of pairwise cell comparisons to be
reliable. We estimated the expected expression magnitude of these

'Center for Blomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA. *Hematology/Oncelogy Program, Childrenis Hospital, Boston,
Massachusetts, USA. *Harvard Stem Cell Institute, Cambridge, Massachusetts, USA_ Center for Regenerstive Me dicine, Massachusetts General Hospital, Boston,
Massachusetts, USA. *Department of Stem Celland Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. Correspondence should be addressed

to BV (peterkharchenko@post harvard edu).
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Single-Cell Differential Expression (SCDE) Method
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