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Introduction

What does "differential expression" mean to you?

https://www.menti.com
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Introduction

Figure: Simplified scRNA-seq workflow [adapted from Wikipedia]
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Introduction

Figure: Simplified scRNA-seq workflow [adapted from Wikipedia]
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Introduction

adapted from Wu et al. 2017

Differential expression means
taking read count data &

performing statistical analysis to discover
quantitative changes in expression levels between
experimental groups

i.e. to decide whether, for a given gene, an
observed difference in read counts is significant
(greater than what would be expected just due to
natural random variation)

Differential expression is an old "problem"
known from bulk RNA-seq and microarray studies

in fact building on one of the most common
statistical problems, i.e comparing groups for
statistical differences
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Introduction

Differential expression is an old problem.

So what is all the commotion about?

https://www.menti.com & 25 06 78

scRNA-seq: special characteristics
high noise levels (technical and biological factors)
low library sizes
low amount of available mRNAs results in amplification biases and
"dropout events"
3’ bias, partial coverage and uneven depth (technical)
stochastic nature of transcription (biological)
multimodality in gene expression; presence of multiple possible
cell states within a cell population (biological)
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Introduction
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Based on tutorial data
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Common methods
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Common methods

Simplified scRNA-seq workflow [adopted from http://hemberg-lab.github.io/
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Common methods

Generic non-parametric methods
e.g. Wilcoxon rank-sum test, Kruskal-Wallis, Kolmogorov-Smirnov test
non-parametric tests generally convert observed expression values to
ranks & test whether the distribution of ranks for one group are
signficantly different from the distribution of ranks for the other group
some non-parametric methods fail in the presence of a large number of
tied values, such as the case for dropouts (zeros) in single-cell RNA-seq
expression data
if the conditions for a parametric test hold, then it will typically be more
powerful than a non-parametric test.
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Common methods

developed for bulk RNA-seq
e.g. edgeR, DE-seq2
compare estimates of mean-expression (sample size)
based on negative binomial distribution
can be assessed by datasets where RNA-seq data has beeen validated
by RT-qPCR
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Common methods

developed for scRNA-seq

e.g. MAST, SCDE, Monocle, Pagoda, D3E etc.
large number of samples (i.e. cells) for each group we are comparing in
single-cell experiments. Thus we can take advantage of the whole
distribution of expression values in each group to identify differences
between groups
we usually do not have a defined set of experimental conditions; instead
we try to identify the cell groups by using an unsupervised clustering
approach.
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Common methods

Miao and Zhang 2016
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Common methods
Supplementary Table 2: Evaluated di↵erential expression methods, together with package versions and the
type of input values provided to each of them. Note that “raw counts” here refers to length-scaled TPMs,
which are on the scale of the raw counts, but are una↵ected by di↵erential isoform usage [10]. CPM values
are calculated with edgeR, and Census counts with monocle.

Short name Method Software version Input
Available
from

Reference

BPSC BPSC BPSC 0.99.0/1 CPM GitHub [11]

D3E D3E D3E 1.0 raw counts GitHub [12]

DESeq2 DESeq2 DESeq2 1.14.1 raw counts Bioconductor [13]

DESeq2betapFALSE DESeq2 without beta prior DESeq2 1.14.1 raw counts Bioconductor [13]

DESeq2census DESeq2 DESeq2 1.14.1 Census counts Bioconductor [13]

DESeq2nofilt
DESeq2 without the built-in in-
dependent filtering

DESeq2 1.14.1 raw counts Bioconductor [13]

DEsingle DEsingle DEsingle 0.1.0 raw counts GitHub [14]

edgeRLRT edgeR/LRT edgeR 3.19.1 raw counts Bioconductor [15–17]

edgeRLRTcensus edgeR/LRT edgeR 3.19.1 Census counts Bioconductor [15–17]

edgeRLRTdeconv
edgeR/LRT with deconvolution
normalization

edgeR 3.19.1,
scran 1.2.0

raw counts Bioconductor [15, 17, 18]

edgeRLRTrobust
edgeR/LRT with robust disper-
sion estimation

edgeR 3.19.1 raw counts Bioconductor [15–17, 19]

edgeRQLF edgeR/QLF edgeR 3.19.1 raw counts Bioconductor [15, 16, 20]

edgeRQLFDetRate
edgeR/QLF with cellular detec-
tion rate as covariate

edgeR 3.19.1 raw counts Bioconductor [15, 16, 20]

limmatrend limma-trend limma 3.30.13 log2(CPM) Bioconductor [21, 22]

MASTcpm MAST MAST 1.0.5 log2(CPM+1) Bioconductor [23]

MASTcpmDetRate
MAST with cellular detection
rate as covariate

MAST 1.0.5 log2(CPM+1) Bioconductor [23]

MASTtpm MAST MAST 1.0.5 log2(TPM+1) Bioconductor [23]

MASTtpmDetRate
MAST with cellular detection
rate as covariate

MAST 1.0.5 log2(TPM+1) Bioconductor [23]

metagenomeSeq metagenomeSeq
metagenomeSeq
1.16.0

raw counts Bioconductor [24]

monocle monocle (tobit) monocle 2.2.0 TPM Bioconductor [25]

monoclecensus monocle (Negative Binomial) monocle 2.2.0 Census counts Bioconductor [25, 26]

monoclecount monocle (Negative Binomial) monocle 2.2.0 raw counts Bioconductor [25]

NODES NODES
NODES
0.0.0.9010

raw counts
Author-
provided
link

[27]

ROTScpm ROTS ROTS 1.2.0 CPM Bioconductor [28, 29]

ROTStpm ROTS ROTS 1.2.0 TPM Bioconductor [28, 29]

ROTSvoom ROTS ROTS 1.2.0
voom-transformed
raw counts

Bioconductor [28, 29]

SAMseq SAMseq samr 2.0 raw counts CRAN [30]

scDD scDD scDD 1.0.0 raw counts Bioconductor [31]

SCDE SCDE scde 2.2.0 raw counts Bioconductor [32]

SeuratBimod Seurat (bimod test) Seurat 1.4.0.7 raw counts GitHub [33, 34]

SeuratBimodnofilt
Seurat (bimod test) without the
internal filtering

Seurat 1.4.0.7 raw counts GitHub [33, 34]

SeuratBimodIsExpr2
Seurat (bimod test) with internal
expression threshold set to 2

Seurat 1.4.0.7 raw counts GitHub [33, 34]

SeuratTobit Seurat (tobit test) Seurat 1.4.0.7 TPM GitHub [25, 33]

ttest t-test stats (R v 3.3)
TMM-normalized
TPM

CRAN [16, 35]

voomlimma voom-limma limma 3.30.13 raw counts Bioconductor [21, 22]

Wilcoxon Wilcoxon test stats (R v 3.3)
TMM-normalized
TPM

CRAN [16, 36]

3

Nature Methods: doi:10.1038/nmeth.4612Soneson and Robinson 2018
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Common methods More detailed examples

More detailed examples

Olga (NBIS) scRNA-seq DE February 2019 17 / 46



Common methods More detailed examples

MAST

uses generalized linear hurdle model

designed to account for stochastic dropouts and bimodal expression distribution in which
expression is either strongly non-zero or non-detectable

The rate of expression Z , and the level of expression Y , are modeled for each gene g,
indicating whether gene g is expressed in cell i (i.e., Zig = 0 if yig = 0 and zig = 1 if
yig > 0)

A logistic regression model for the discrete variable Z and a Gaussian linear model for the
continuous variable (Y|Z=1):

logit(Pr (Zig = 1)) = Xiβ
D
g

Pr (Yig = Y |Zig = 1) = N(Xiβ
C
g , σ

2
g), where Xi is a design matrix

Model parameters are fitted using an empirical Bayesian framework

Allows for a joint estimate of nuisance and treatment effects

DE is determined using the likelihood ratio test
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Common methods More detailed examples

Let’s stop for a minute...

Olga (NBIS) scRNA-seq DE February 2019 19 / 46



Common methods More detailed examples

The key

Outcomei = (Modeli) + errori

we collect data on a sample from a much larger population

statistics lets us to make inferences about the population from which sample was
derived

we try to predict the outcome given a model fitted to the data
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Common methods More detailed examples

The key

t = x1−x2
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Common methods More detailed examples

Generic recipe
model data e.g. gene expression
fit model to the data and/or data to the model
estimate model parameters
use model for prediction and/or inference
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Common methods More detailed examples

Generic recipe
model e.g. gene expression with random error
fit model to the data and/or data to the model, estimate model
parameters
use model for prediction and/or inference

Important implication
the better model fits to the data the better statistics
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Common methods More detailed examples

Common distributions

Negative Binomial

Read Counts

F
re

qu
en

cy

0 5 10 15 20

0
10

0
20

0
30

0
40

0
50

0

Negative Binomial

Read Counts

F
re

qu
en

cy

0 2 4 6 8 10

0
50

10
0

15
0

Negative Binomial

Read Counts

F
re

qu
en

cy

0 2 4 6 8 10 12

0
50

10
0

15
0

20
0

µ = mu

δ
2 = mu + mu2

/size

mu: mean expression, size: and the dispersion, which is inversely related to the variance. NB fits bulk RNA-seq data very well
and it is used for most statistical methods designed for such data. In addition, it has been show to fit the distribution of molecule
counts obtained from data tagged by unique molecular identifiers (UMIs) quite well (Grun et al. 2014, Islam et al. 2011).
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Common methods More detailed examples

Common distributions

Zero−inflated NB

Read Counts
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d, dropout rate. The dropout rate of a gene is strongly correlated with the mean expression of the gene. Different zero-inflated
negative binomial models use different relationships between mu and d and some may fit mu and d to the expression of each
gene independently. Implemented in MAST, SCDE.
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Common methods More detailed examples

Common distributions

Poisson−Beta

Read Counts
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µ = g ∗ a/(a + b)
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2 = g2 ∗ a ∗ b/((a + b + 1) ∗ (a + b)2)

a: the rate of activation of transcription; b the rate of inhibition of transcription; and g the rate of transcript production while
transcription is active at the locus. Differential expression methods may test each of the parameters for differences across groups
or only one (often g). Implemented in BPSC.
May be further expanded to explicitly account for other sources of gene expression differences such as batch-effect or library
depth depending on the particular DE algorithm.
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Common methods More detailed examples

MAST (revisited)

uses generalized linear hurdle model

designed to account for stochastic dropouts and bimodal expression distribution in which
expression is either strongly non-zero or non-detectable

The rate of expression Z , and the level of expression Y , are modeled for each gene g,
indicating whether gene g is expressed in cell i (i.e., Zig = 0 if yig = 0 and zig = 1 if
yig > 0)

A logistic regression model for the discrete variable Z and a Gaussian linear model for the
continuous variable (Y|Z=1):

logit(Pr (Zig = 1)) = Xiβ
D
g

Pr (Yig = Y |Zig = 1) = N(Xiβ
C
g , σ

2
g), where Xi is a design matrix

Model parameters are fitted using an empirical Bayesian framework

Allows for a joint estimate of nuisance and treatment effects

DE is determined using the likelihood ratio test
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Common methods More detailed examples

SCDE

models the read counts for each gene using a mixture of a NB, negative binomial, and a
Poisson distribution

NB distribution models the transcripts that are amplified and detected

Poisson distribution models the unobserved or background-level signal of transcripts that
are not amplified (e.g. dropout events)

subset of robust genes is used to fit, via EM algorithm, the parameters to the mixture of
models

For DE, the posterior probability that the gene shows a fold expression difference between
two conditions is computed using a Bayesian approach
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Common methods More detailed examples

Monocole

Originally designed for ordering cells by progress through differentiation stages
(pseudo-time)

The mean expression level of each gene is modeled with a GAM, generalized additive
model, which relates one or more predictor variables to a response variable as

g(E(Y )) = β0 + f1(x1) + f2(x2) + ...+ fm(xm) where Y is a specific gene expression level, xi are
predictor variables, g is a link function, typically log function, and fi are non-parametric functions

(e.g. cubic splines)

The observable expression level Y is then modeled using GAM,

E(Y ) = s(ϕt (bx , si )) + ε where ϕt (bx , si ) is the assigned pseudo-time of a cell and s is a cubic
smoothing function with three degrees of freedom. The error term ε is normally distributed with a
mean of zero

The DE test is performed using an approx. χ2 likelihood ratio test
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Performance

Performance
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Supplementary Table 2: Evaluated di↵erential expression methods, together with package versions and the
type of input values provided to each of them. Note that “raw counts” here refers to length-scaled TPMs,
which are on the scale of the raw counts, but are una↵ected by di↵erential isoform usage [10]. CPM values
are calculated with edgeR, and Census counts with monocle.

Short name Method Software version Input
Available
from

Reference

BPSC BPSC BPSC 0.99.0/1 CPM GitHub [11]

D3E D3E D3E 1.0 raw counts GitHub [12]

DESeq2 DESeq2 DESeq2 1.14.1 raw counts Bioconductor [13]

DESeq2betapFALSE DESeq2 without beta prior DESeq2 1.14.1 raw counts Bioconductor [13]

DESeq2census DESeq2 DESeq2 1.14.1 Census counts Bioconductor [13]

DESeq2nofilt
DESeq2 without the built-in in-
dependent filtering

DESeq2 1.14.1 raw counts Bioconductor [13]

DEsingle DEsingle DEsingle 0.1.0 raw counts GitHub [14]

edgeRLRT edgeR/LRT edgeR 3.19.1 raw counts Bioconductor [15–17]

edgeRLRTcensus edgeR/LRT edgeR 3.19.1 Census counts Bioconductor [15–17]

edgeRLRTdeconv
edgeR/LRT with deconvolution
normalization

edgeR 3.19.1,
scran 1.2.0

raw counts Bioconductor [15, 17, 18]

edgeRLRTrobust
edgeR/LRT with robust disper-
sion estimation

edgeR 3.19.1 raw counts Bioconductor [15–17, 19]

edgeRQLF edgeR/QLF edgeR 3.19.1 raw counts Bioconductor [15, 16, 20]

edgeRQLFDetRate
edgeR/QLF with cellular detec-
tion rate as covariate

edgeR 3.19.1 raw counts Bioconductor [15, 16, 20]

limmatrend limma-trend limma 3.30.13 log2(CPM) Bioconductor [21, 22]

MASTcpm MAST MAST 1.0.5 log2(CPM+1) Bioconductor [23]

MASTcpmDetRate
MAST with cellular detection
rate as covariate

MAST 1.0.5 log2(CPM+1) Bioconductor [23]

MASTtpm MAST MAST 1.0.5 log2(TPM+1) Bioconductor [23]

MASTtpmDetRate
MAST with cellular detection
rate as covariate

MAST 1.0.5 log2(TPM+1) Bioconductor [23]

metagenomeSeq metagenomeSeq
metagenomeSeq
1.16.0

raw counts Bioconductor [24]

monocle monocle (tobit) monocle 2.2.0 TPM Bioconductor [25]

monoclecensus monocle (Negative Binomial) monocle 2.2.0 Census counts Bioconductor [25, 26]

monoclecount monocle (Negative Binomial) monocle 2.2.0 raw counts Bioconductor [25]

NODES NODES
NODES
0.0.0.9010

raw counts
Author-
provided
link

[27]

ROTScpm ROTS ROTS 1.2.0 CPM Bioconductor [28, 29]

ROTStpm ROTS ROTS 1.2.0 TPM Bioconductor [28, 29]

ROTSvoom ROTS ROTS 1.2.0
voom-transformed
raw counts

Bioconductor [28, 29]

SAMseq SAMseq samr 2.0 raw counts CRAN [30]

scDD scDD scDD 1.0.0 raw counts Bioconductor [31]

SCDE SCDE scde 2.2.0 raw counts Bioconductor [32]

SeuratBimod Seurat (bimod test) Seurat 1.4.0.7 raw counts GitHub [33, 34]

SeuratBimodnofilt
Seurat (bimod test) without the
internal filtering

Seurat 1.4.0.7 raw counts GitHub [33, 34]

SeuratBimodIsExpr2
Seurat (bimod test) with internal
expression threshold set to 2

Seurat 1.4.0.7 raw counts GitHub [33, 34]

SeuratTobit Seurat (tobit test) Seurat 1.4.0.7 TPM GitHub [25, 33]

ttest t-test stats (R v 3.3)
TMM-normalized
TPM

CRAN [16, 35]

voomlimma voom-limma limma 3.30.13 raw counts Bioconductor [21, 22]

Wilcoxon Wilcoxon test stats (R v 3.3)
TMM-normalized
TPM

CRAN [16, 36]

3

Nature Methods: doi:10.1038/nmeth.4612

Performance
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Performance

No ground truth, i.e. no independently validated truth is available for
testing

Known data

using data we know something about
to get "positive controls"

Simulated data

null-data sets by re-sampling,
modeling data sets based on various
distributions

Comparing between methods and
scenarios

Comparing numbers of DEs incl. as a
function of group size

Investigating results

How does the expression and
distributions of detected DEs look like?
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Performance

False positives (type I error) vs. false negatives (type II error)
Sensitivity and specificity
Precision and recall

adapted from Wikipedia
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Performance

False positives (type I error) vs. false negatives (type II error)
Sensitivity and specificity
Precision and recall

Dal Molin, Baruzzo, and Di Camillo 2017: 2 conditions of 100 cells each simulated with 10 000
genes, out of which 2 000 set to DEs (based on NB and bimodal distributions)
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Performance

Consistency

Miao et al. 2017
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Performance

And so much more...

Soneson and Robinson 2018

Bias, robustness and scalability in single-cell
differential expression analysis

36 statistical approaches for DE analysis
to compare the expression levels in the
two groups of cells

based on 9 data sets, with 11 - 21
separate instances (sample size effect)

extensive evaluation metrics incl. number
of genes found, characteristics of the false
positive detections, robustness of
methods, similarities between methods
etc.

conquer, a collection of consistently
processed, analysis-ready public
scRNA-seq data sets
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Practicalities

Practicalities
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Practicalities

Getting to know your data
Example data: 46,078 genes x 96 cells
22,229 genes with no expression at all
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Practicalities

Choosing DE methods

Soneson and Robinson 2018
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Practicalities

Rembering the bigger picture

Stegle, Teichmann, and Marioni 2015

QC filtering

Cell-cycle phase

Normalization of cell-specific biases

Confounding factors, incl. batch
effects

Detection rate, i.e the fraction of
detected genes per cell

Imputations strategies for dropout
values

What is pragmatic: programming
language, platform, speed,
collaborative workflows etc.
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Practicalities

Staying critical
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Summary

What to remember from this hour?

https://www.menti.com & 25 06 78
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Summary

Growing field

Angerer et al. 2017
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Summary

Growing field

https://www.scrna-tools.org/tools

Zappia, Phipson, and Oshlack 2018
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Summary

Summary
scRNA-seq is a rapidly growing field

DE is a common task so many newer and better methods will be developed

understanding basic statistical concepts enables one to think more like a statistician: to
choose and evaluate methods given data set

staying critical, staying updated, staying connected
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