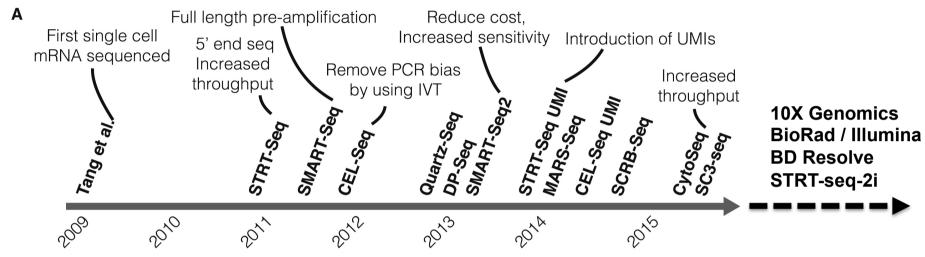
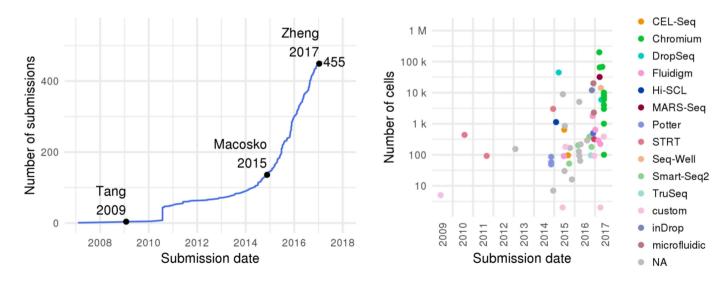

# Single-cell transcriptomics (scRNA-seq) Eukaryotic Single Cell Genomics facility



# **Applications for scRNA-sequencing**



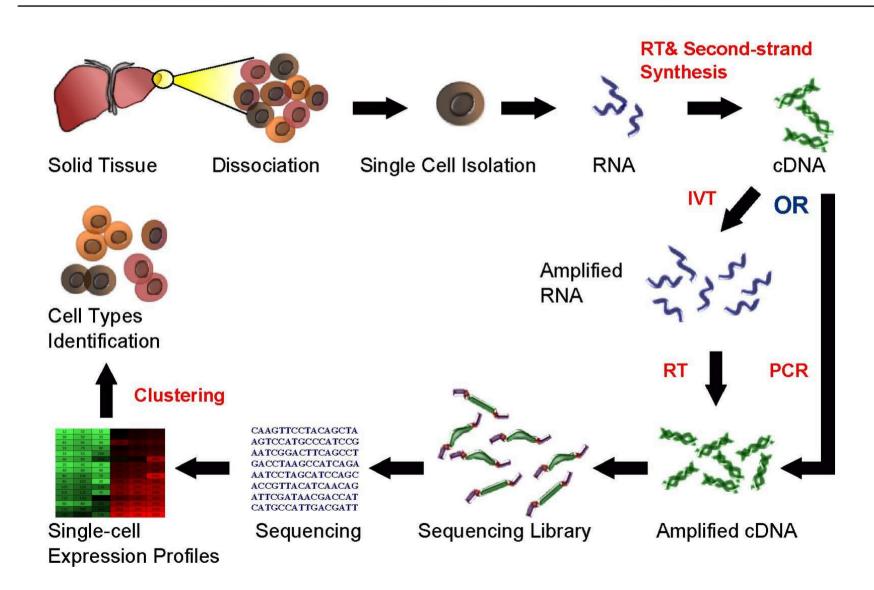

- Heterogeneity analysis
- Cell type identification
- Lineage tracing, cellular states in differentiation and development
- Monoallelic gene expression, splicing patterns
- More...




# **Short history of scRNA-seq**






Adapted from: Kolodziejczyk A et al, Molecular Cell, 2015



Angerer et al, Curr Opin Sys Biol 2017

# Single cell RNA seq workflow

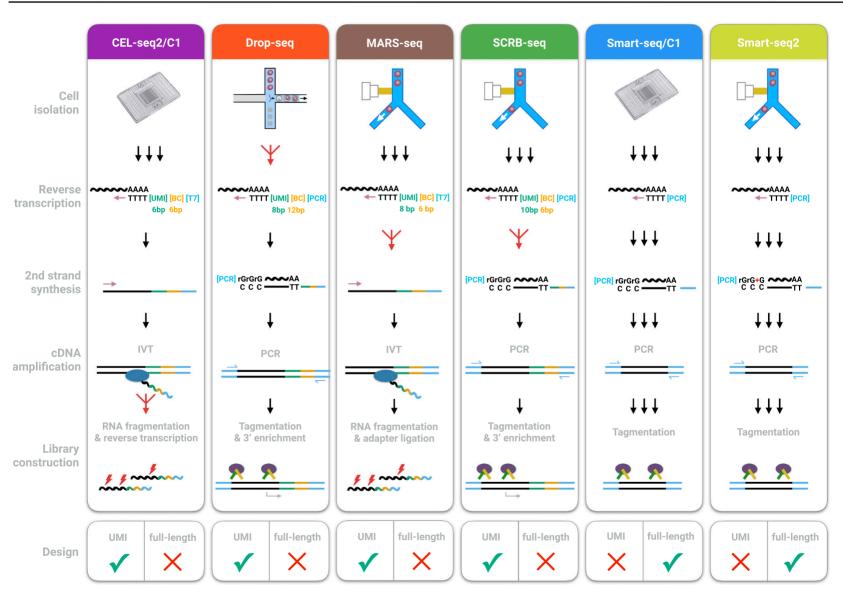




# Single-cell isolation or capture



| MICROPIPETTING MICROMANIPULATION                                            | LASER CAPTURE MICRODISSECTION                                               | FACS                                                                  | MICRODROPLETS                                    | MICROFLUIDICS<br>e.g. FLUIDIGM C1                | Multi- Sample Nano- Dispenser 10x10 wells 96 subarrays |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| low number of cells                                                         | low number of cells                                                         | hundreds of cells                                                     | large number of cells                            | hundreds of cells                                | large number of cells                                  |
| any tissue                                                                  | any tissue                                                                  | dissociated cells                                                     | dissociated cells                                | dissociated cells                                | dissociated cells                                      |
| enables selection of cells<br>based on morphology or<br>fluorescent markers | enables selection of cells<br>based on morphology or<br>fluorescent markers | enables selection of cells<br>based on size or<br>fluorescent markers | no selection of cells<br>(can presort with FACS) | no selection of cells<br>(can presort with FACS) | no selection                                           |
| visualisation of cells                                                      | visualisation of cells                                                      | fluorescence and light<br>scattering measurements                     | fluorescence detection                           | visualisation of cells                           | visualisation of cells                                 |
| time consuming                                                              | time consuming                                                              | fast                                                                  | fast                                             | fast                                             | fast                                                   |
| reaction in microliter volumes                                              | reaction in microliter volumes                                              | reaction in microliter volumes                                        | reaction in nanoliter volumes                    | reaction in nanoliter volumes                    | reaction in nanoliter volumes                          |


Cytoplasmic aspiration

Patch-seq

Adapted from: Kolodziejczyk A et al, Molecular Cell, 2015

### scRNA-sequencing protocol examples





Zieghain et al. Mol Cell 2017

# scRNA-sequencing protocols



| Full-length   | 5'-end focused                                | 3'-end focused                                |
|---------------|-----------------------------------------------|-----------------------------------------------|
| • SMART-seq   | • STRT                                        | <ul> <li>CEL-seq</li> </ul>                   |
| SMART-seq2    | <ul><li>STRT-C1</li><li>STRT-seq-2i</li></ul> | MARS-seq                                      |
| Nugen Ovation |                                               | <ul><li>Quartz-seq</li><li>Drop-seq</li></ul> |

Adapted from Poulin JF et al, Nature Neuroscience, 2016

- Poly(T) primer
- Single cell contain ~10 pg total RNA
- 1-5% is mRNA
- ~10-20% of the transcripts get reverse transcribed

# Single-cell RNA-sequencing protocols

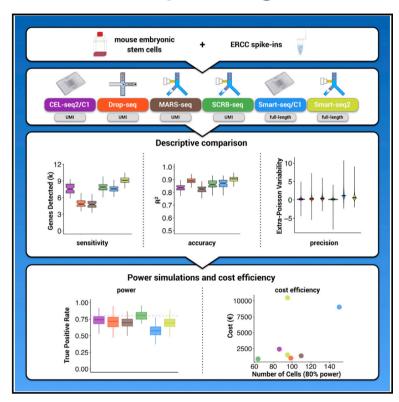


# -Which method suits you?

### Full-length

- Whole transcript information
- Gene expression quantification
- Isoform, SNP and mutations

### Tag-based methods (5' or 3')


- Estimate of transcript abundance
- Early multiplexing
- Combined with molecular counting
- Retain DNA strand information

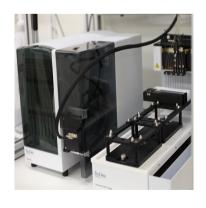


# Comparison between methods



### Comparative Analysis of Single-Cell RNA Sequencing Methods




Zieghain et al. Mol Cell 2017

- Drop-seq is preferable when quantifying transcriptomes of large numbers of cells with low sequencing depth.
- (SCRB-seq and MARS-seq is preferable when quantifying transcriptomes of fewer cells.)
- Smart-seq2 is preferable when annotating and/or quantifying transcriptomes of fewer cells.
- STRT-seq / STRT-seq-2i not included in comparison.

# **ESCG** facility platform



- Started in 2015
- Sten Linnarsson (STRT-seq, STRT/C1, STRT-seq-2i), Rickard Sandberg (Smart-seq2)
- High throughput single-cell RNA-sequencing, ATAC-seq and immune profiling
- Over 320,000 single cells sequenced (in March 2018)









# **ESCG** facility scRNA-seq services



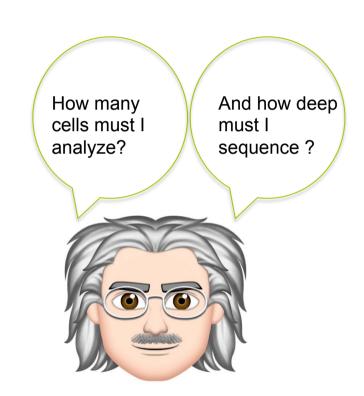
- From single cell suspension or FACSed cells
- cDNA generation and QC (no QC for Smart-seq ICELL8)
- Library preparation
- Sequencing
- Data de-multiplexing and alignment to ref genome (human and mouse)

|                        | Full-length       |                     | Quantitative      |                             |
|------------------------|-------------------|---------------------|-------------------|-----------------------------|
| Method                 | Smart-seq2        | Smart-Seq<br>ICELL8 | STRT-seq-2i       | 10xGenomics                 |
| Format                 | 384-well plate    | Microwell chip      | Microwell chip    | Chromium microfluidics chip |
| Input                  | FACS-sorted cells | Suspension          | Suspension / FACS | Suspension                  |
| Transcript<br>coverage | Full-length       | Full-length         | 5'                | 3'                          |










# How do you get started?



# User meeting

- Project discussion
  - Feasibility
  - Tissue, cells
  - Project size
  - Time line
- Choice of method
  - Data output
  - Number of cells to be analyzed
  - Location, cell delivery
- Bioinformatics
  - Early contact
  - National Bioinformatics Infrastructure Sweden (NBIS)
- Data delivery
- User fees



# Single cell submission guidelines



- Optimize your cell isolation protocol
  - Limit time of isolation
  - Be gentle
- Single cell suspension criteria
  - High viability (>80%)
  - No cell clumps or debris
  - Cell strain and wash
- FACS facility
  - Cell viability stain
- Visit us before
  - Single cell suspension quality control

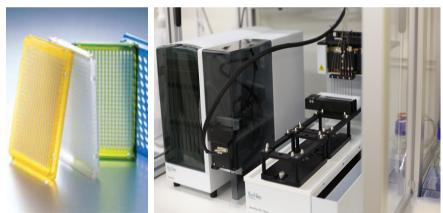
# **ESCG** facility RNA-seq services



|                     | FULL-LENGTH                    |                                   | QUANTITATIVE                                 |                             |
|---------------------|--------------------------------|-----------------------------------|----------------------------------------------|-----------------------------|
| Method              | Smart-seq2                     | Smart-Seq ICELL8                  | STRT-seq-2i<br>(WaferGen)                    | Drop-seq<br>(10XGenomics)   |
| Format              | 384-well plate                 | Microwell chip (up to 8 samples)  | Microwell chip (up to 8 samples)             | Chromium microfluidics chip |
| Cells per run       | 384                            | Up to 1800                        | Up to 3000                                   | 8 x 500-10,000              |
| Sample format       | FACS dispensed cell/<br>nuclei | Fresh cells or nuclei suspensions | Fresh cell suspensions<br>Nuclei suspensions |                             |
| Cell selection      | Yes (FACS)                     | Yes (imaging)                     | Yes (imaging/FACS)                           | No                          |
| Transcript coverage | Full-length                    | Full-length                       | 5'                                           | 3'                          |
| Reads per cell      | ~500k                          |                                   | ~50k-100k                                    | ~50k-100k                   |



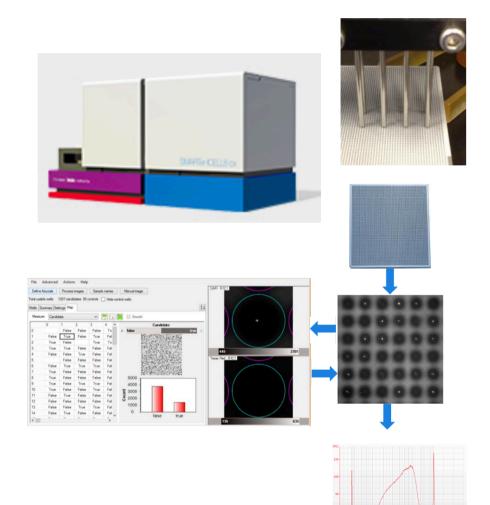







# **Smart-seq2 at ESCG**

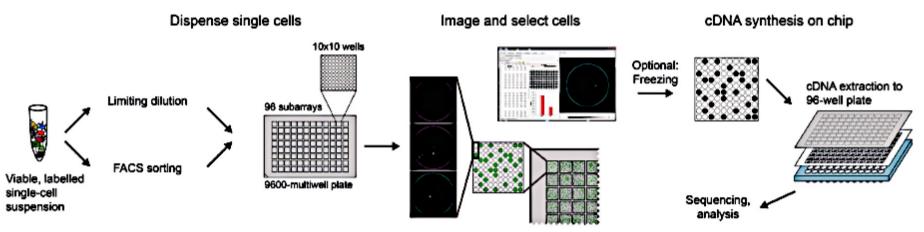






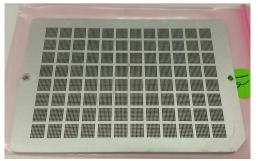

- 384 well plates
- Input: cells / nuclei
- Isolation: FACS
- Full-length
- Sequencing: 50bp single-read
- ERCC spike-ins
- Flexible delivery (shipment)

# ICELL8 cx Smart-seq





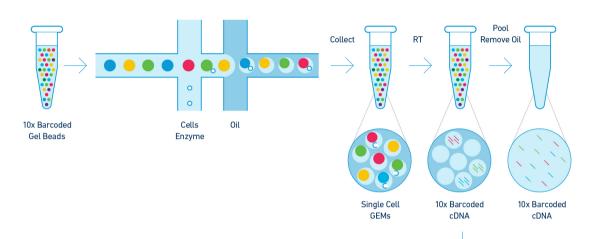

- On-chip, low volume reactions
- Input: cells / nuclei
- Isolation: Limiting dilution dispense
- Image-based cell selection
   1-3 fluorescent channels
   Std. Hoechst (live) / PI (dead)
- Scale: 5184 wells (~1500 cells)
- Up to 8 samples per chip
- Full-length
- Sequencing:
- No size limitation


# STRT-seq-2i: dual-index 5' single-cell RNA-sequencing












- Isolation: FACS/dispensing
- Input: cells / nuclei
- Scale: 9600 wells (~2500 cells)
- Up to 8 samples per chip
- Sequencing: 5'-tag (50 bp single read)
- No size limitation
- UMI:s

# 10X Genomics Chromium - Drop-seq technology





Outlet well

Gel Bead well
Sample well
Oil well

P5

Read 1

Barcode

CDNA

Sample
Index

P7

Read 2

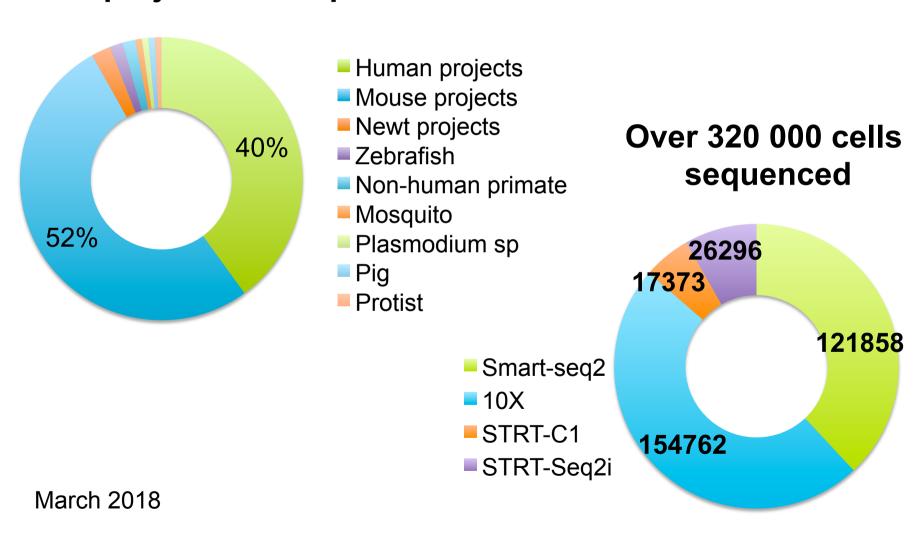
- Isolation: Droplets
- Input: cells / nuclei
- Scale: 500-10,000 x 8
- Sequencing: 3'-tag (HiSeq2500/NovaSeq)
- Up to 8 samples in parallel
- Size: up to 30µm (channels 50µm)
- Now with v3 kit, improved
- UMI, cell and sample barcodes
- CellRanger

# Comparing our scRNA-seq services SciLif



|                     | Full-length                 |                            | Quantitative                |                             |
|---------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|
|                     | Smart-seq2                  | Smart-Seq ICELL8           | STRT-seq-2i                 | 10xGenomics                 |
| Format              | 384-well plate              | Microwell chip             | Microwell chip              | Chromium microfluidics chip |
| Cell number         | 384                         | ~1500                      | ~2500                       | 8 x 500-10,000              |
| Input               | FACS-sorted cells or nuclei | Suspension cells or nuclei | Suspension cells or nuclei  | Suspension cells or nuclei  |
| Transcript coverage | Full-length                 | Full-length                | 5'                          | 3'                          |
|                     | •Flexible delivery          | •Limiting dilution         | •Limiting dilution/<br>FACS | •High throughput            |
| Features            | •Isoforms, SNPs, mutations  | •Cell selection            | •Cell selection             | •8 samples parallel         |
|                     |                             | •No size limit             | •No size limit              |                             |
|                     | •ERCC spike-ins             | •8 samples parallel        | •8 samples parallel         | •Sample pooling             |

# **Data delivery**




- Sequencing at NGI, HiSeq2500, NovaSeq
- Analysis pipelines for mouse and human
  - In-house: smart-seq2, STRT-seq-2i
  - Takarabio mappa: Smart-seq ICELL8
  - Cell ranger: 10xGenomics
- UPPMAX, Bioinformatics compute and storage
  - Users apply individually for projects
  - We deliver: de-multiplexed, annotated gene expression data,
     QC-files, Fastq
- Bioinformatics
  - Done by user
  - Support from BILS and WABI
  - Collaborations

### **ESCG** in numbers



### 137 projects on 9 species



# Cell types analyzed at ESCG



### Brain

Oligodendrocyte Ependymal cells Motor Neurons All cell types: Nuclei-Frozen Spinal cord Neurons (sensory ganglia) Neurons/glia Primany neurons Spinal cord injuries Smaller and Large DRG neurons Interneurons Embryonic neural crest cells Pericytes Sensory Neurons Glioblastoma (GBM) cells Microglia Retina/Spinal Cord Enteric cells (neuron, glia) **OPCs** Schwann cells NES cells Astrocytes Human Dopaminergic Neurons

### **Immune system**

B cells
T cells
Tumor macrophages
B-cells from RA patients
CD4 T-cells
inactive T-cells
All immune cells

### Skin

Keratinocytes Endothelial cells Skin: All cell types

### Heart

Cardiomyocytes Mouse Embryonic Progenitor Heart Cells All cell types

#### **Breast**

Fibroblasts from mammary tumor Breast cancer cells Mammary gland epithelial cells

### Cancer / tumor

CLL tumor cells
CAFs from colon tumors
Leukemia cells
Cancer cell lines co-cultured with
Immune cells
myeloid cells from solid tumors
Patient Tongue tumor cells

#### **Pancreas**

pancreatic islets or islets of Langerhans

### Bladder

Bladder normal epithelium Bladder cancer cell line

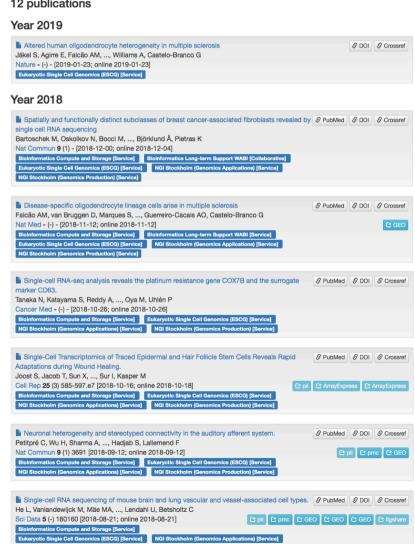
### Endometrium

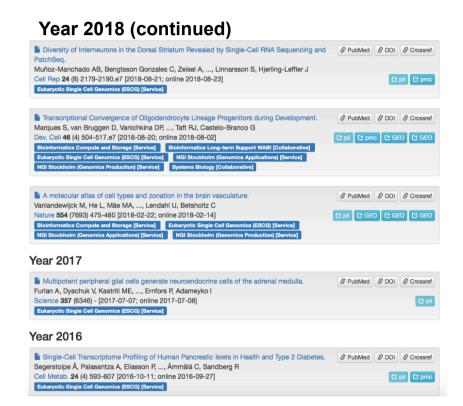
Stromal Progenitor - Epithelium

#### Cell lines

HCT116 - instestinal epithelial cell line Human HeLa cells HEK293 C2C12 cells

### Other


Embryonic stem cells Hematopoietic stem cell (HSC, mouse) iPS cell lines Pluripotent stem cells Human Neuronal Stem cells trophectoderm Neural Crest Cells Mesenchymal progenitors II.Cs Primary bone marrow (BM, human) Fibroblasts from POMPE patients vascular smooth muscle cells Artery cells Thymus cells Thymic epithelial cells Kidney cells Kidney pericytes Liver cells Spermatids & spermatogonia vascular smooth muscle cells Intestinal ILC Blastema Mosquito hemocytes Plasmodium (MALARIA) eukaryotic cells


**Protists** 

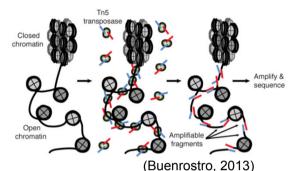
# Publications with data from ESCG SciLieLab



#### 12 publications






https://publications.scilifelab.se. search on label

Remember to acknowledge us in your papers

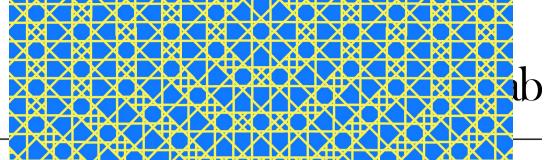
# New single-cell services offered

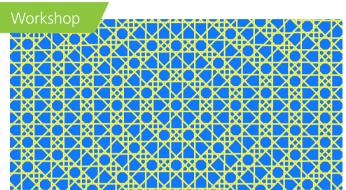


- scATAC-seq (Chromatin accessibility)
  - 10x, now available!
    - Commercial kit
    - From isolated nuclei.
  - ICELL8, will be established
    - From Greenleaf lab publication (Mezger, A. et al. 2018).
    - Can be run directly from cell suspension
- Immune profiling
  - 10x, now available!
    - Commercial V(D)J kits
      - T-/B-cell receptor identification
      - Can be combined with transcript profiling
- Transcriptome combined with surface protein expression
  - 10x, available on request






# What lays ahead?




- Emerging techniques
  - Smart-seq3 (under development by R. Sandberg lab)
  - Transcriptome + Proteome
  - Transcriptome + Epigenome
  - CRISPR-Cas9 + Transcriptome
  - 'split-pooling' scRNA-seq
  - non-coding RNA-seq



- In situ sequencing
  - Facility service will be available
- We constantly update with available techniques
  - If you have requests, let us now





### Single cell biology meets diagnostics

12th International workshop on approaches to single cell analysis

### March 4 -5th, 2019

A meeting focused on the future application of single cell analysis to diagnostics

Speaker highlights include:

Christopher Walsh, Harvard Medical School Jun Kunisawa, NIBIOHN Nikolaus Rajewsky, Max Delbrück Center for Molecular Medicine Barbara Treutlein, MPI Leipzig Itaru Hamachi, Kyoto University

### **Meeting sponsors**

SciLifeLab | Uppsala University | Waseda University | Osaka University | Japan Science and Technology Agency (JST) | 10X Genomics | Olink Proteomics | Fluidigm | Illumina

**Venue:** University Main Building, Hall X, Uppsala

Poster abstract and registration deadline: February 8th

More information and registration: www.scilifelab.se/events



















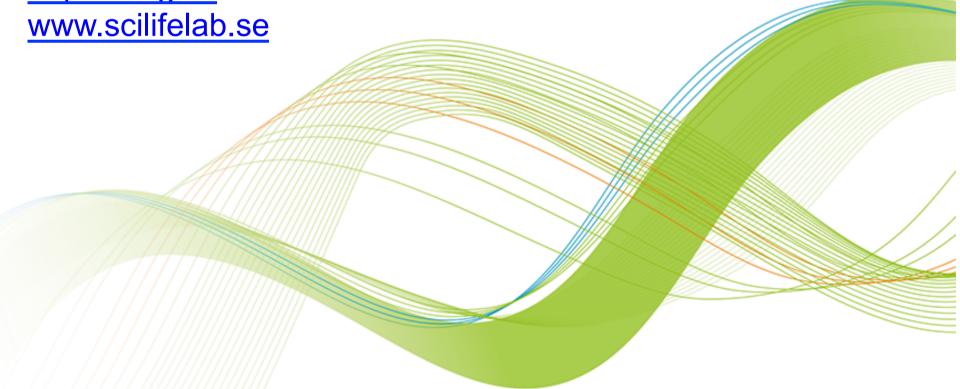


Deadline for registration February 8th












# **Eukaryotic Single Cell Genomics facility**

escg@scilifelab.se

http://escg.se

