Single cell analysis of midbrain dopamine neurons

- Thomas Perlmann lab (LICR/KI)

Åsa Björklund

asa.bjorklund@scilifelab.se

Midbrain dopaminergic neurons

Less than 1% of the neurons in a brain Important for:

- motivation \& reward systems
- motor behavior
- working memory

Parkinsons Disease - death of DA neurons in Substantia Nigra Successful grafting with ES derived DA neurons in 80-90s
Animal trials with iPS derived DA neurons ongoing

Pitx3 eGFP knock in mice labels mature DA neurons.

FACS sorted eGFP positive cells from midbrains of two mouse strains.
All libraries prepared in the Perlmann lab

- eGFP Pitx3 heterozygote mice at:
- Embryo-E13.5, E15.5, E18.5
- Juvenile - P1, P7
- Adult - P90
- eGFP Pitx3 homozygote (Pitx3 double KO) mice at:
- E13.5
- P1
- Total 1395 SmartSeq2 libraries after quality control

Quality Control

a
Uniquely mapping reads

b
Uniquely mapping reads

Exon mapping
reads

3' mapping

Normalization reads

Gene detection

Normalization reads

Gene detection

Quality Control - removal of non Pitx3 cells

Pitx3 expression

eGFP expression

Olig1 expression

Graph based clustering to remove non-DA neurons

eGFP

Clusters

g

Olig1

Stages	eGFP		
		Develop. Stage	Number of Cells
,		E13.5	135
-		E15.5	140
$\because \% .3$		E18.5	181
. $\%$		P1	258
\%		P7	80
..		P90	312
		E13.5H	141
		P1H	148

UPPSALA UNIVERSITET

Analysis of Pitx3 Heterozygote cells

- Main aims
- Find possible subgroups of cells
- Find marker genes for the groups
- Understand development of the lineage

Selection of variable genes

- Using ERCC spike-ins and Brennecke method
- 453 variable genes using all ages
- 300-800 variable genes using individual ages

Initial PCA - mainly time separation

Clear separation by 3 maturation stages: early embryo (E13/E15), perinatal (E18-P7) and adult (P90)

Stockholms universitet

Genes along pseudotime

e

PCA

Main problem: All cells are very similar - same celltype. Hard to identify subgroups since the signal is weak relative to developmental time, noise and other sources of variation.

Top loadings of PC2,PC3 seems to define our lineages: Slc6a3 (Dat), Nxph4, Gad2 and Vip

t-distributed stochastic neighbor embedding (tSNE) and igraph

tSNE with different sets of variable genes
tsne P1, 327 genes

tsne P90, 825 genes

tsne all, 544 genes

Weighted edges for 5 nearest neighbors merged for all tSNEs

Weighted igraph network

Variable genes at each stage should reflect lineage differences more than developmental differences universitet

Classifying cells into subgroups

Stages

Using genes Vip, Gad2, Nxph4 and Slc6a3 cells are colored by expression of one or more of these genes.
 universitet

Classifying cells into subgroups

Infomap clusters

Clusters defined by infomap community detection.

Each cluster classified into a subgroup based on proportion of cells exclusively expressing one of our markers.

Manual definition of Gad2+ and Nxph4+ lineage into Th high/low.

SciLifuLab

Marker gene discovery

Differential expression between the clusters both across all stages and at one developomental stage at a time was done using SAMseq.

Validations with immunohistochemistry

Pitx3 double KO cells

b

SciLifeLab

- Pitx3 eGFP/eGFP
- N-Dat ${ }^{\text {low }}$
- NT-Dat ${ }^{\text {ow }}$
- G-Datow
- GT-Datiow
- T-Dathigh
- AT-Dathigh
- VT-Dathigh
- ND

Padlock probe - in situ sequencing

- Method developed at Mats Nilsson lab (SU)
- Selected 49 genes among our differential expression data:
- Fairly high expression
- Markers for subgroups
- Some general markers to exclude other celltypes
- Cells defined as expanded area around nuclei (from Dapi staining)

Filter in situ data

E_Tissue1-709 cells

G_Tissue2 - $\mathbf{7 5 5}$ cells

F_Tissue8-828 cells

H_Tissue5-49 cells

- Filtering of in situ cells for DA neurons:
- Cells in selected regions
- Require epression of Pitx 3 , EGFP or Th.
- Keep only cells with at least 3 subgroup marker genes.
- Out of around 60 K cells per section only 2141 cells kept.

Predict subgroup using Random Forest

- Convert both scRNAseq data and in situ data to rank based matrices.
- Train random forest with scRNA-seq data - using cluster membership
- Predict subgroup for in situ cells
- Several rounds of training - prediction - only keep consistent predictions.
a

b

SciLifuLab

Conclusions

- Most extensive classification of subgroups of midbrain DA neuron subtypes to date.
- Several verification experiments with antibody staining (also with human tissue), in situ sequencing, retrograde labeling of innervation.
- Main issue in the data was that time separation was much stronger than separation of the subgroups.

Shiny apps

- http://shiny.rstudio.com/
- Interactive R applications used to present the data
- http://rshiny.nbis.se/shiny-server-apps/shiny-apps-scrnaseq/ perlmannlab mouseDA

