
Combining	single-cell	and	Spatial	
Transcriptomics	data:		

case	study	on	human	fetal	heart	

Stefania	Giacomello	



Why do we need spatial resolution? 

Understanding	how	cell	localization	in	the	tissue	influences	
gene	expression	
	
How	adjacent	regions	in	tissues	interact	at	gene	expression	
level	
	
Cell	fate	decided	by	several	morphogens	whose	gradients	
originate	from	different	regions	of	the	embryo	

 



How do we achieve spatial resolution? 

§  Computational	methods	
	

§  Spatial	transcriptomics	methods	(ST,	ISS,	FISSEQ,	
imaging	-	smFISH)	

	



Computational	approaches	



Seurat 

	
§  Applied	to	zebrafish	embryo		

§  Seurat	combines	cells’	gene	expression	profiles	(scRNA-seq)	
with	a	set	of	‘landmark’	genes	(in	situ	hybridization)	to	
guide	spatial	assignment	

	



Seurat 

§  47	ISH	genes	

§  128	bins	(64	L-R	symmetry)	
	~40–120	cells	per	bin,	
from	in	situ	expression	domain		
	
§  851	single	cells		
	
	



Seurat 

§  47	ISH	genes	

§  128	bins	(each	~40–120	cells),	based	on	in	situ	expression	
domain	à	64	bins	due	to	left-right	symmetry	

§  851	single	cells	(no	cells	with	less	than	2000	genes)	
	
	



Seurat – pros & cons 

§  Bins	could	be	reduced	to	the	single-cell	level	(each	cell	in	
each	position	has	a	distinct	and	reproducible	gene	
expression	identity	and	position)	

§  Seurat	relies	on	the	spatial	segregation	of	gene	expression	
patterns	to	construct	a	reference	map	à	tissues	such	
tumors	(no	guarantee	of	reproducible	spatial	patterning),	
or	tissues	where	cells	have	highly	similar	expression	
patterns	and	are	spatially	scattered	across	a	tissue	(i.e.	
adult	retina)?	

	
	



DistMap 

§  Reconstruct	the	embryo	and	to	predict	spatial	gene	
expression	approaching	single-cell	resolution	

	
§  Seurat	was	not	giving	enough	resolutionà	obtained	87%	of	

cells	in	the	embryo	are	confidently	resolved	and	depth	
(>8000	genes/cell)	

	



DistMap 

§  in	situ	hybridization	data	for	84	genes,	resulting	in	a	
quantitative	high-resolution	gene	expression	reference	
atlas	with	substantial	combinatorial	complexity		



DistMap 



DistMap – pros & cons 

§  Bins	are	very	small	and	the	number	of	genes	detected	is	
high	

§  Spatial	segregation	of	gene	expression	patterns	to	
construct	a	reference	map	



Wet	lab	approaches	



Spatial Transcriptomics 

2D gene expression map of a tissue section 

Study functional and developmental aspects



The concept 
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The method 

Cryosectioning



The method 
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The method 

Staining

High resolution imaging

Cryosectioning



The method 

Permeabilization



The method 

Permeabilization Poly-T capture of transcripts



The method 

 On surface cDNA synthesis

Permeabilization Poly-T capture of transcripts



The method 

 Tissue removal and release On surface cDNA synthesis

Permeabilization Poly-T capture of transcripts



The method 

Alignment and sorting of barcodes

Alignment of image and barcoded transcripts

Illumina sequencing



Proof of concept – later diffusion? 

Vertical diffusion Horizontal diffusion

Permeabilization



Proof of concept – later diffusion? 

Vertical diffusion Horizontal diffusion
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cDNA synthesis
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Proof of concept – no later diffusion 



DistMap 



Application	on		
human	fetal	heart	data	



§  Cardiomyocyte development 

§  Cardiac progenitor-/ stem cells 

§  Differentiation process 

Main questions of the study 

Cell,	1997	



The approach 

§  single-cell RNA-seq (10X Chromium)  

§  Spatial Transcriptomics 

~3 mm

Clinical age: 6.5w
(~46 days)

~10 mm

Carnegie stage: 18
(44-48 days)



The approach 

~5 mm
~2 mm

~3 mm

Clinical age: 4.5-5w
(~33 days)

Clinical age: 6.5w
(~46 days)

Clinical age: 9w
(~63 days)

~30 mm
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Carnegie stage: 23
(56-60 days)

Carnegie stage: 18
(44-48 days)

Carnegie stage: 13
(28-32 days)

§  single-cell RNA-seq (10X Chromium)  

§  Spatial Transcriptomics 
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Single	cell	sequencing	
Embryonic	heart	6.5-7w	

Spatial gene expression 



Single	cell	sequencing	
Embryonic	heart	6.5-7w	

Spatial gene expression 

Spatial	Transcriptomics	
Embryonic	heart	6.5w	
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Spatial gene expression 
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Spatial gene expression 
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Subclustering of spatial transcriptomics data 



Spatial gene expression – subclustering of outflow tract 



Spatial gene expression – subclustering of outflow tract 



Spatial gene expression – subclustering of outflow tract 
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Mapping of single cells on spatial subclusters 
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Spatial fate maps 



Spatial fate maps 



Conclusions 

§  Model	organisms	à	computational	methods	can	be	useful		

§  Non	model	organisms	à	a	spatial	transcriptomics	
approach	is	more	straightforward		

§  Overall,	the	best	case	scenario	is	a	spatial	transcriptomics	
approach	with	single-cell	resolution	
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