Pseudotime and Trajectory Inference

Stefania Giacomello

Cells display a continuous spectrum of states (i.e. activation and/ or differentiation process)

Individual cells are executing through a gene expression program in an unsynchronized manner \rightarrow each cell is a snapshot of the transcriptional program under study

sc-omics technologies allow to model biological systems

Discrete classification of cells is not appropriate

Summary of the continuity of cell states in the data → Trajectory Inference (TI) (or pseudotemporal ordering) Sequence of gene expression changes each cell must go through as part of a dynamic biological process

Sequence of gene expression changes each cell must go through as part of a dynamic biological process

Track changes in gene expression:

- function of time
- function of progress along the trajectory

Sequence of gene expression changes each cell must go through as part of a dynamic biological process

Track changes in gene expression:

- function of time
- function of progress along the trajectory

Pseudotime → abstract unit of progress: distance between a cell and the start of the trajectory 1. Population of single cells \rightarrow different stages

2. Computational tools to order cells along a trajectory topology Automatic reconstruction of a cellular dynamic process by structuring individual cells sampled and profiled from that process

3. Identify the different stages in the dynamic process and their interrelationships

• Unbiased and transcriptome-wide understanding of a dynamic process

• They allow the objective identification of new subsets of cells

Trajectory's total length: total amount of transcriptional change that a cell undergoes at it moves from the starting to the end state

Linear, branched, or a more complex tree or graph structure

Type of trajectories

- Delineation of a differentiation tree
- Inference of regulatory interaction responsible for one or more bifurcations

• Transcriptome-wide data

• Starting cell from which the trajectory will originate

• Set of important marker genes, or even a grouping of cells into cell states.

Providing prior information:

can help the method to find the correct trajectory among many, equally likely, alternatives

IF available, can bias the trajectory towards current knowledge

- 1. conversion of data to a simplified representation using:
 - dimensionality reduction
 - clustering
 - graph building

- 2. ordering the cells along the simplified representation:
 - identify cell states
 - constructing a trajectory through the different states
 - projecting cells back to the trajectory

Convert high-dimensional data to a more simplified representation, while maintaining the main characteristics of the data in the original space.

Dimensionality reduction techniques:

- PCA (linear projection of the data such that the variance is preserved in the new space)
- independent component analysis (ICA)
- t-stochastic neighbor embedding (t-SNE)
- diffusion maps

able to detect nonlinear relationships between cells

- Graph-based techniques

cells = nodes in a graph edges =connect transcriptionally similar cells

It retains the most important edges in the graph \rightarrow scales well to large numbers of cells (n > 10 000)

Many TI methods use graph-based techniques

- 1. simplified graph representation as input to find a path through a series of nodes (i.e. individual cells or groups of cells)
- 2. different path-finding algorithms are used by different algorithms

- "starting cell" by the user → representative for cells at the start of the process
 (e.g. the most immature cell in the case of a cell developmental process) used as a reference cell to compare all other cells against
- longest connected path in a sparsified graph \rightarrow all cells are projected onto that path

Tools available

59 methods - unique combination of characteristics:

- required input

- methodology used

produced outputs
 (topology fixing and trajectory type)

Method	Date	Most complex	Fixes topology	Prior required	Prior optional	Evaluated	Reference
Monocle ICA	01/04/2014	Tree	Parameter	# branches	None	Yes	[13]
Wanderlust	24/04/2014	Linear	Fixed	Start cell(s)	None		[14]
SCUBA	30/12/2014	Tree	Free	None	Time course. Marker genes	Yes	[15]
Sincell	27/01/2015	Tree	Free	None	None	Yes	[16]
NBOR	08/06/2015	Linear	TBD	TBD	TBD	No ^{ai}	[6]
Waterfall	03/09/2015	Linear	Fixed	None	None	Yes	[17]
gpseudotime	15/09/2015	Linear	TBD	TBD	TBD	No ^c	[18]
Embeddr	18/09/2015	Linear	Fixed	None	None	Yes	[19]
ECLAIR	12/01/2016	Tree	TBD	TBD	TBD	No ^f	[20]
DPT	08/02/2016	Bifurcation	Fixed	None	Marker genes	Yes	[21]
Pseudogp	05/04/2016	Linear	Fixed	None	None	Yes	[22]
SLICER	09/04/2016	Graph	Free	Start cell(s)	End cell(s), Marker genes		[23]
SCell	19/04/2016	Linear	TBD	TBD	TBD	No ^e	[24]
Wishbone	02/05/2016	Bifurcation	Parameter	Start cell(s), # end states	Marker genes	Yes	[25]
TSCAN	13/05/2016	Tree	Free	None	None	Yes	[26]
SCOUP	08/06/2016		Parameter	Start cell(s), Cell grouping, # end states	None		[27]
DeLorean	17/06/2016	Linear	TBD	TBD	TBD	No ⁸	[28]
StemID	21/06/2016	Tree	Free	None	None	Yes	[29]
Ouija	23/06/2016	Linear	Fixed	Marker genes	None	Yes	[30]
Mpath	30/06/2016	Tree	Free	Cell grouping	None		[31]
cellTree	13/08/2016	Tree	Free	None	Cell grouping		[32]
WaveCrest	17/08/2016		TBD	Time course	None	No ^f	[33]
SCIMITAR	04/10/2016		Fixed	None	None	Yes	[34]
SCORPIUS	07/10/2016	Linear	Fixed	None	None		[35]
SCENT	30/10/2016	Linear	TBD	TBD	TBD	No ^d	[36]
k-branches	15/12/2016		TBD	TBD	TBD	No ^h	[37]
SLICE	19/12/2016	Tree	Free	None	Cell grouping, Marker genes		[38]
Topslam	13/02/2017	Linear	Fixed	Start cell(s)	None	Yes	[39]
Monocle DDRTree	21/02/2017	Tree	Free	None	# end states	Yes	[40]
Granatum	22/02/2017		TBD	TBD	TBD	No ^e	[41]
GPfates	03/03/2017	Multifurcation	Parameter	# end states	None	Yes	[42]
MFA	15/03/2017	Multifurcation	Parameter	# end states	None	Yes	[43]
PHATE	24/03/2017		TBD	TBD	TBD	No"	[44]
TASIC	04/04/2017		TBD	TBD	TBD	NO	[45]
SUMSC	10/04/2017	Tree	TBD From	Napa	Start call(c) End call(c)	No	[40]
ccTDA	01/05/2017	Lipoar	TPD	TRD	TPD	Nof	[47]
LINCUR	31/05/2017	Linear	TBD	TBD	TBD	Nof	[40]
reCAT	19/06/2017	Cycle	Fixed	None	None	Yes	[50]
FORKS	20/06/2017	Tree	TBD	Start cell(s)	None	No ^{fj}	[51]
MATCHER	24/06/2017	Linear	TBD	TBD	TBD	No ^j	[52]
PhenoPath	06/07/2017		Fixed	None	None	Yes	[53]
HopLand	12/07/2017	Linear	TBD	TBD	TBD	No ^{aj}	[54]
SoptSC	26/07/2017	Linear	TBD	Start cell(s)	None	No ^{aj}	[55]
PBA	30/07/2017	Multifurcation	TBD	TBD	TBD	No ^j	[56]
BGP	01/08/2017		TBD	TBD	TBD	No ^j	[57]
scanpy	09/08/2017	Bifurcation	TBD	TBD	TBD	No ^j	[58]
B-RGPs	01/09/2017		TBD	TBD	TBD	No ^j	[59]
WADDINGTON-OT	27/09/2017	Graph	TBD	TBD	TBD	No ^{bj}	[60]
AGA	27/10/2017	Disconnected graph	TBD	TBD	TBD	No ^J	[61]
GPseudoRank	30/10/2017	Linear	TBD	TBD	TBD	No ^{aj}	[62]
p-Creode	15/11/2017	Tree	TBD	TBD	TBD	No ²	[63]
iCpSc	30/11/2017	Linear	TBD	180	IRD	No",	[64]
GrandPrix	03/12/2017	Multifurcation	TRD	Lime course	None Chart call(c)	NO'	[65]
CALISTA	21/01/2018	Graph	TRD	None	Staft cell(s)	NO'	[00]
scEpath	05/02/2018	Tree	TRD	TRD	TRD	NO ^{aj}	[69]
MERLOT	08/02/2018	Tree	TRD	TBD	TBD	No	[60]
ElPiGraph.R	04/03/2018	Graph	TBD	TBD	TBD	No	[00]
cir torupritiv	0000000	orapii	.50			.10	L

Topology of the trajectory:

- fixed by design

Early methods Mainly focused on correctly ordering the cells along the fixed topology

- inferred computationally

Increased difficulty of the problem Broadly applicable on more use cases Topology inference still in the minority TI methods classified also on a set of algorithmic components:

- Performance
- Scalability
- Output data structures

Monocle introduced the concept of pseudotime

Now it has a complete new version - has been rated one of the most performing methods

Trajectory inference workflow:

- 1. Choosing genes to order the data
- 2. Reducing dimensionality of the data
- 3. Ordering cells in pseudotime

Trajectory inference workflow:

- Choosing genes to order the data → look for genes that increase or decrease in expression during the functional process and use them to structure the data
 - unsupervised dpFeature \rightarrow desirable approach to avoid biases
 - semi-supervised \rightarrow genes that co-vary with marker genes
 - if we have time points \rightarrow find differentially expressed genes between start and end

- genes selected based on high dispersion among cells (gene's variance usually depends on its mean \rightarrow careful how genes are selected based on variance, i.e. mean expression)

Monocle 2 - gene identification (dpFeature)

tSNE often groups cells into clusters that do not A Identifying cell types reflect their progression through the process scrNA-Seq

DE genes of cells in different clusters are informative markers of cell's progress in the trajectory

tSNE finds genes that vary over the trajectory but not the trajectory itself

- 1. Exclude genes expressed in very few cells (usually 5%)
- 2. PCA on remaining genes \rightarrow components explaining variance in the data
- 3. Use identified PCs in tSNE
- 4. Apply density peak clustering to the 2D tSNE
 - ightarrow takes into account cells density and distance to cells with higher density
 - → density peaks = cells with high local density and far away from other high density cells
 - \rightarrow density peaks = clusters
- 5. Identify genes that differ between clusters

Trajectory inference workflow:

2. Reducing dimensionality of the data \rightarrow Reversed Graph Embedding

3. Ordering cells in pseudotime \rightarrow It assumes a tree structure with root and leaves and it fits the best tree to the data (manifold learning)

Monocle 2 – dimensionality reduction – learning the structure

Monocle 2 uses reverse graph embedding to learn the data structure

It simultaneously:

Fates of human fetal heart cells

SciLifeLab

Fates of human fetal heart cells

Fates of human fetal heart cells

