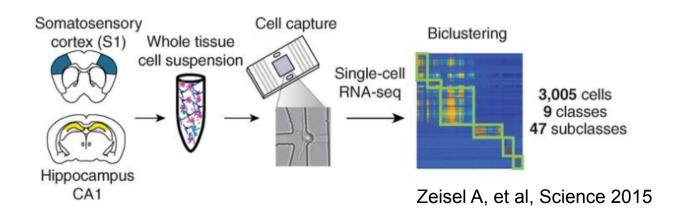
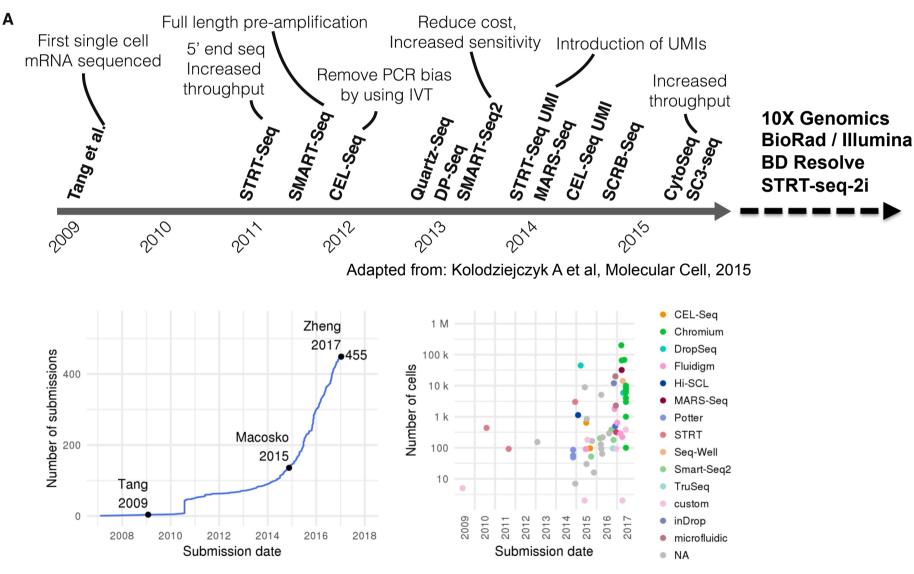


Henrik Gezelius May 21, 2018

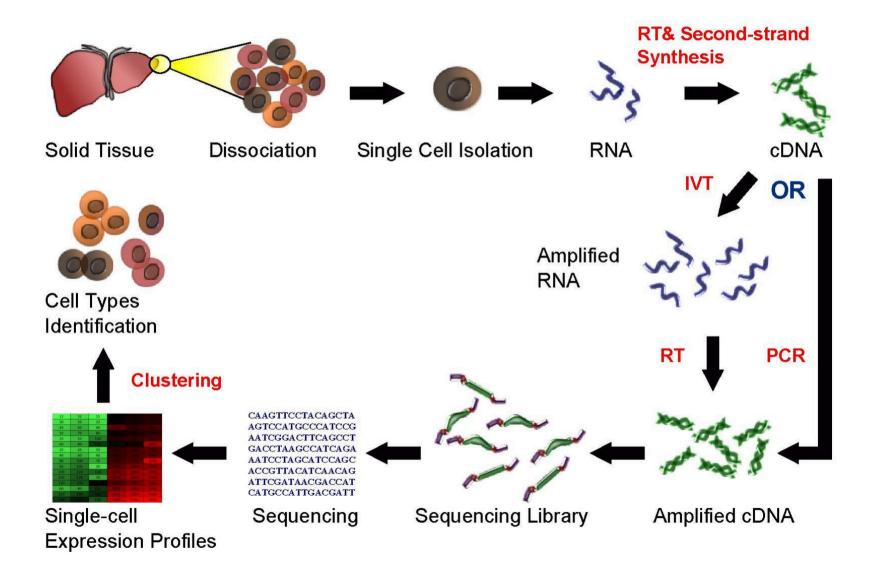

Single-cell transcriptomics (scRNA-seq) Eukaryotic Single Cell Genomics facility

Applications for scRNA-sequencing



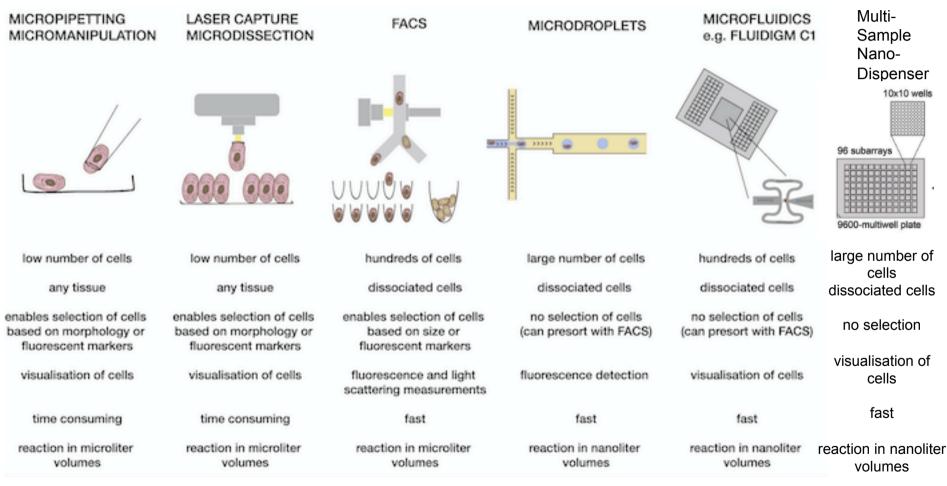
- Heterogeneity analysis
- Cell type identification
- Lineage tracing, cellular states in differentiation and development
- Monoallelic gene expression, splicing patterns
- More...

Short history of scRNA-seq



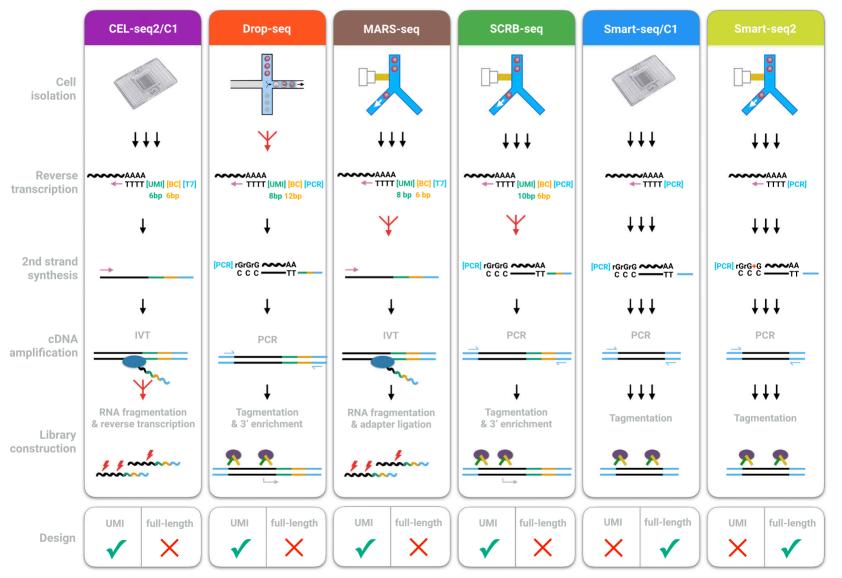
Angerer et al, Curr Opin Sys Biol 2017

Single cell RNA seq workflow



From Wikipedia

Single-cell isolation or capture


Cytoplasmic aspiration

Adapted from: Kolodziejczyk A et al, Molecular Cell, 2015

• Patch-seq

scRNA-sequencing protocol examples

Zieghain et al. Mol Cell 2017

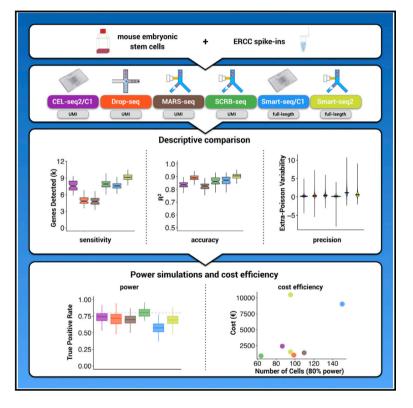
	cDNA-amplification protoc	
Full-length	5'-end focused	3'-end focused
SMART-seq	STRT	 CEL-seq
SMART-seq2 Nugen Ovation	• STRT-C1	 MARS-seq Quartz-seq
	 STRT-seq-2i 	Drop-seq

Adapted from Poulin JF et al, Nature Neuroscience, 2016

- Poly(T) primer
- Single cell contain ~10 pg total RNA
- 1-5% is mRNA
- 10-20% of the transcripts get reverse transcribed

Single-cell RNA-sequencing protocols

-Which method suits you?


- Full-length
 - Whole transcript information
 - Gene expression quantification
 - Isoform, SNP and mutations

- Tag-based methods (5' or 3')
 - Estimate of transcript abundance
 - Early multiplexing
 - Combined with molecular counting
 - Retain DNA strand information

Comparative Analysis of Single-Cell RNA Sequencing Methods

Zieghain et al. Mol Cell 2017

- Drop-seq is preferable when quantifying transcriptomes of large numbers of cells with low sequencing depth.
- (SCRB-seq and MARS-seq is preferable when quantifying transcriptomes of fewer cells.)
- Smart-seq2 is preferable when annotating and/or quantifying transcriptomes of fewer cells.
- STRT-seq / STRT-seq-2i not included in comparison.

ESCG facility platform

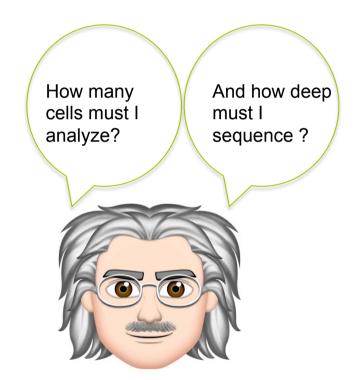
- Started in 2015
- Sten Linnarsson (STRT-seq, STRT/C1, STRT-seq-2i), Rickard Sandberg (Smart-seq2)
- High throughput single-cell RNA-sequencing
- Over 320,000 single cells sequenced (in March 2018)



ESCG facility services

- From single cell suspension or FACSed cells
- cDNA generation and QC
- Library preparation
- Sequencing
- Data de-multiplexing and alignment to ref genome (human and mouse)

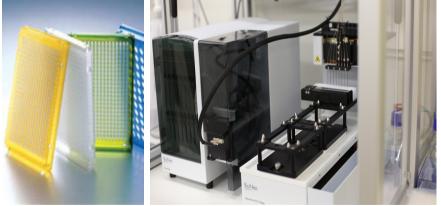
	Full-length	Quantitative	
Method	Smart-seq2	STRT-seq-2i	10xGenomics
Format	384-well plate	Microwell chip	Chromium microfluidics chip
Input	FACS-sorted cells	Suspension / FACS	Suspension
Transcript coverage	Full-length	5'	3'



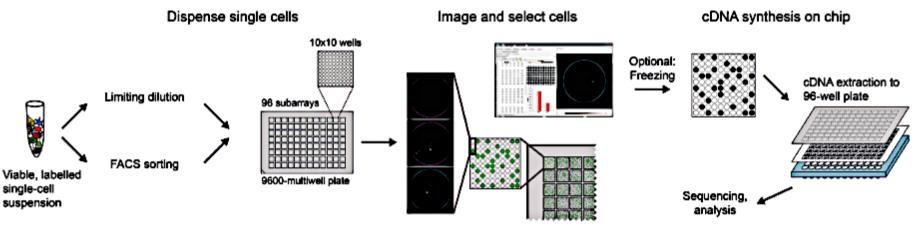
User meeting

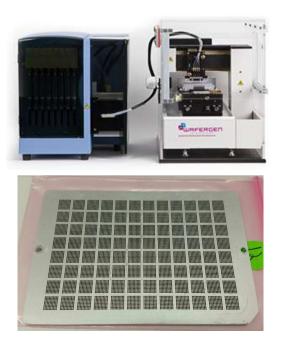
- Project discussion
 - Feasibility
 - Tissue, cells
 - Project size
 - Time line
- Choice of method
 - Data output
 - Number of cells to be analyzed
 - Location, cell delivery
- Bioinformatics
 - Early contact
 - National Bioinformatics Infrastructure Sweden (NBIS)
- Data delivery
- User fees

	FULL-LENGTH	QUAN	TITATIVE
Method	Smart-seq2	STRT-seq-2i (WaferGen)	Drop-seq (10XGenomics)
Format	384-well plate	Microwell chip	Chromium microfluidics chip
Cells per run	384	Up to 3000	500-10,000 (3,000)
Sample format	FACS dispensed cell/ nuclei	Fresh Cell suspensions Nuclei suspensions	
Cell selection	No	Yes	No
Transcript coverage	Full-length	5'	3'
Reads per cell	~500k	~50k-100k	~50k-100k



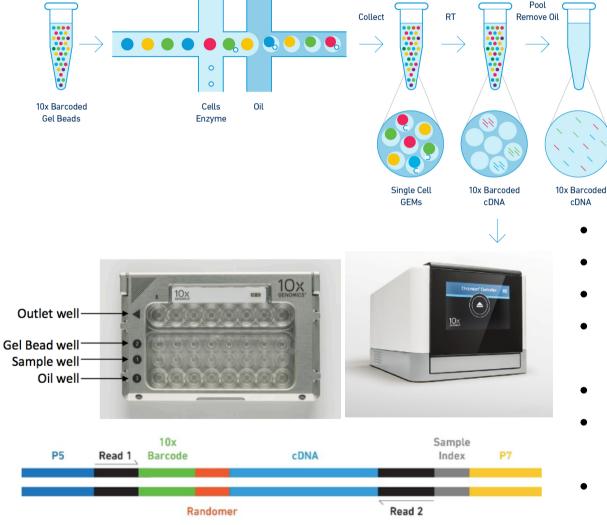
Smart-seq2 at ESCG




- 384 well plates
- Isolation: FACS
- Input: cells/nuclei
- Full-length
- Sequencing: 50bp single-read
- ERCC spike-ins
 - Two different dilutions
- Flexible delivery (shipment)

STRT-seq-2i: dual-index 5' single-cell RNA-sequencing

Adapted from: Hochgerner H, et al, SciRep, 2017



• Isolation: FACS/dispensing

- Input: Cells/nuclei
- Scale: 9600 wells (~2500 cells)
- Sequencing: 5'-tag (50 bp single read)
- Up to 8 samples in a chip
- No size limitation
- UMI:s

10X Genomics Chromium -Drop-seq technology

- Isolation: Droplets
- Input: Cells/nuclei
- Scale: 500-10,000 x 8
- Sequencing: 3'-tag (HiSeq2500/NovaSeq)
- Up to 8 samples in parallel
- Size: up to 30µm (channels 50µm)
- UMI, cell barcode, sample barcode
- CellRanger

Data delivery

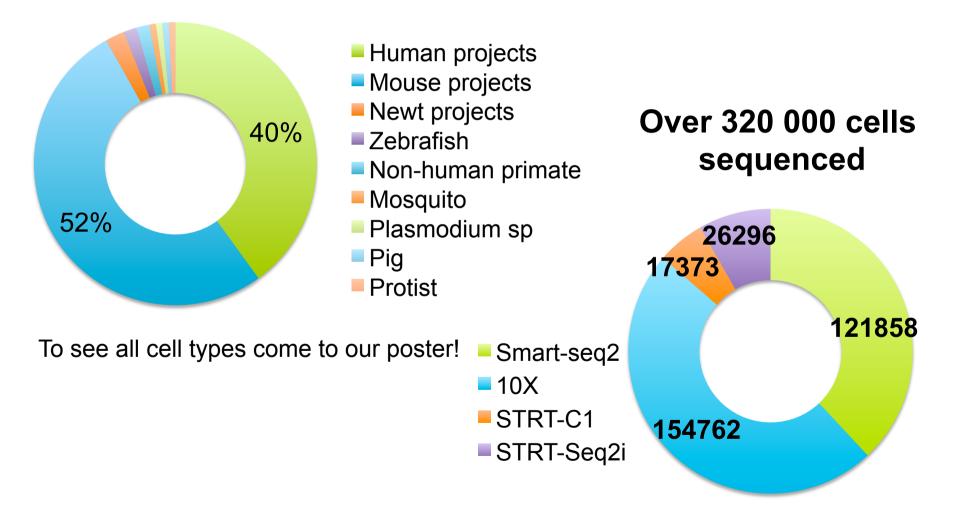
- Sequencing at NGI, HiSeq2500, NovaSeq
- Analysis pipelines for mouse and human
 - In-house: STRT-seq-2i, smart-seq2
 - Cell ranger: 10xGenomics
- UPPMAX, Bioinformatics compute and storage
 - Users apply individually for projects
 - We deliver: Annotated gene expression data, QC-files, Fastq
- Bioinformatics
 - Done by user
 - Support from BILS and WABI
 - Collaborations

	Full-length	Quantitative	
	Smart-seq2	STRT-seq-2i	10xGenomics
Format	384-well plate	Microwell chip	Chromium microfluidics chip
Cell number	384	9,600 (~2,500)	8 x 500-10,000
Input	FACS-sorted cells	Suspension	Suspension
Transcript coverage	Full-length	5'	3'
Features	 Flexible delivery Isoforms, SNPs, mutations Nuclei ERCC spike-ins 	 Limiting dilution/ FACS Cell selection Unbiased 8 samples parallel Nuclei 	 High throughput 8 samples parallel Nuclei Sample pooling

Smart-seq2	STRT-seq-2i	10XGenomics
384 well plate	9600 wells chip (~2,500 cells)	1 sample (~3,000 cells)
 Validation Smart-seq2 library Sequencing (50 bp, single-read 	 Validation STRT library (dual index) Sequencing (50 bp single-read) 	 Validation Illumina library Sequencing (paired-end, dual index)
~45,000 SEK	~60,000 SEK	~50,000 SEK

Costs include: Reagents, consumables, instrument depreciation, instrument service, personnel. Overhead is not included.

Single cell submission guidelines



- Optimize your cell isolation protocol
 - Limit time of isolation
 - Be gentle
- Single cell suspension criteria
 - High viability (>80%)
 - No cell clumps or debris
 - Cell strain and wash
- FACS facility
 - Cell viability stain
- Visit us before
 - Single cell suspension quality control

ESCG in numbers

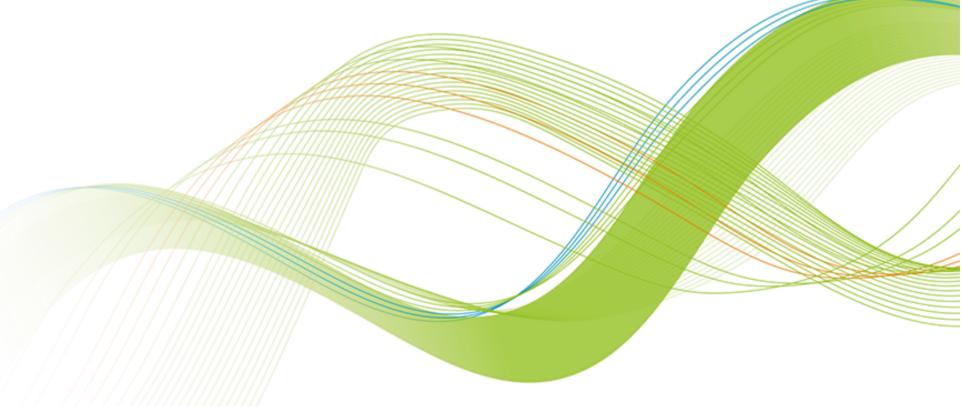
137 projects on 9 species

Cell types analyzed at ESCG

Ducin	Transverse enseterer	Concert/humon	Other
Brain	Immune system	Cancer / tumor	Other
Oligodendrocyte	B cells	CLL tumor cells	Embryonic stem cells
Ependymal cells	T cells	CAFs from colon tumors	Hematopoietic stem cell (HSC, mouse)
Motor Neurons	Tumor macrophages	Leukemia cells	iPS cell lines
All cell types: Nuclei-Frozen	B-cells from RA patients	Cancer cell lines co-cultured with	Pluripotent stem cells
Spinal cord	CD4 T-cells	Immune cells	Human Neuronal Stem cells
Neurons (sensory ganglia)	inactive T-cells	myeloid cells from solid tumors	trophectoderm
Neurons/glia	All immune cells	Patient Tongue tumor cells	Neural Crest Cells
Primany neurons			Mesenchymal progenitors
Spinal cord injuries	Skin	Pancreas	ILCs
Smaller and Large DRG neurons	Keratinocytes	pancreatic islets or islets of	Primary bone marrow (BM, human)
Interneurons	Endothelial cells	Langerhans	Fibroblasts from POMPE patients
Embryonic neural crest cells	Skin: All cell types		vascular smooth muscle cells
Pericytes		Bladder	Artery cells
Sensory Neurons	Heart	Bladder normal epithelium	Thymus cells
Glioblastoma (GBM) cells	Cardiomyocytes	Bladder cancer cell line	Thymic epithelial cells
Microglia	Mouse Embryonic		Kidney cells
Retina/Spinal Cord	Progenitor Heart Cells	Endometrium	Kidney pericytes
Enteric cells (neuron, glia)	All cell types	Stromal Progenitor - Epithelium	Liver cells
OPCs			Spermatids & spermatogonia
Schwann cells	Breast	Cell lines	vascular smooth muscle cells
NES cells	Fibroblasts from mammary	HCT116 - instestinal epithelial cell	Intestinal ILC
Astrocytes	tumor	line	Blastema
Human Dopaminergic Neurons	Breast cancer cells	Human HeLa cells	Mosquito hemocytes
	Mammary gland epithelial	HEK293	Plasmodium (MALARIA) eukaryotic cells
	cells	C2C12 cells	Protists

What lays ahead?

- Emerging techniques
 - Single cell ATAC-seq (under test/evaluation)
 - Transcriptome + Epigenome (future)
 - Transcriptome + Proteome (future)
 - CRISPR-Cas9 + Transcriptome (future)
 - 'split-pooling' scRNA-seq (future?)
 - non-coding RNA-seq (future?)
- Validation
 - Small molecule FISH
- Human Cell Atlas
 - Sten Linnarsson lab among the involved



Eukaryotic Single Cell Genomics facility <u>escg@scilifelab.se</u>

http://escg.se

