

Quality Assessment of sequencing data

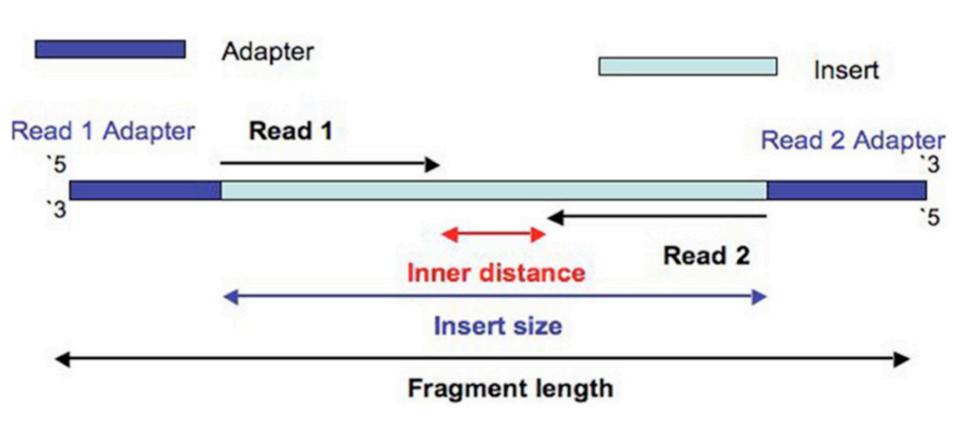
Outline

- Why QC?
 - Bad data = bad assembly
 - Partial / missing data?
 - Is there enough data?
 - Did I get what I expect?
 - Can I assemble it?
 - Do I need to change my analysis workflow?
 - Is it the correct type?
 - Are there biases?
 - Is there contamination?
 - Most checks can be made before assembly and assembly validation

Focus:

- Illumina data (PE + MP)
- Pacbio data
- Nanopore data

First steps



- Make sure your data is whole.
 - File checksums ensure data integrity
 - MD5
 - \$ md5sum file1.fastq.gz # before
 823fc8b0ca72c6e9bd8c5dcb0a66ce9b file1.fastq.gz
 \$ md5sum -c checksums.md5 # after
 file1.fastq.gz: OK
 file2.fastq.gz: OK
 file3.fastq.gz: FAILED
 md5sum: WARNING: 1 of 3 computed checksums did NOT match
 - Calculate file checksums <u>before</u> transfer.
 - Validate checksums against the transferred files <u>after</u> the transfer.

Illumina Sequencing

Paired end Illumina library

Illumina Sequencing

Mate pair Illumina library

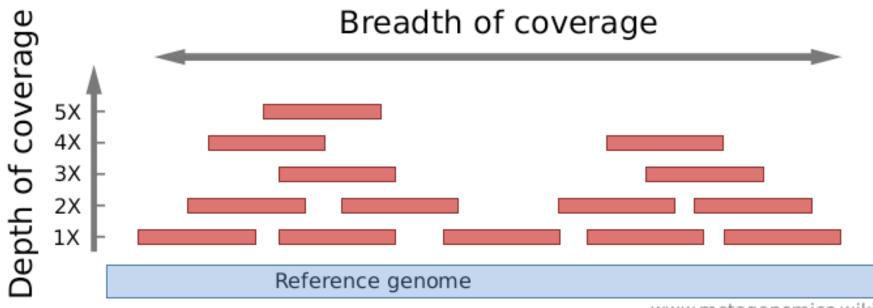
Circularized molecules are then re-fragmented yielding smaller fragments. Sub-fragments containing the original junction are enriched via the biotin tag (B) in the junction adapter.

Format Check

Check the format

- \$ zcat file1.fastq.gz | head @HWI-ST486:212:D0C8BACXX:6:1101:2365:1998 1:N:0:ATTCCT CTTATCGGATCGCATCCCAGTTTGGGCTTGTAAACGGTGAATCCTCAAAGACCACCAATGTTG +

CCCFFFFFHHHHHJJJJJJHIJIIJGGJGFEGIGHIBFGHJIJIICHIIIDHGGIGIGHEFG @HWI-ST486:212:D0C8BACXX:6:1101:2365:1998 2:N:0:ATTCCT TAACCGAGCAAACAAAAGTTGGTTGTCACAAATTGTAATGACCTGATTAAACTTGATTTTTT+


@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

EAS139	the unique instrument name
136	the run id
FC706VJ	the flowcell id
2	flowcell lane
2104	tile number within the flowcell lane
15343	'x'-coordinate of the cluster within the tile
197393	'y'-coordinate of the cluster within the tile
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y	Y if the read is filtered, N otherwise
18	0 when none of the control bits are on, otherwise it is an even number
ATCACG	index sequence

Do I have enough data?

- What is my expected genome size?
- What depth of coverage should I expect?
 - Illumina:
 - 100x coverage in total
- Coverage = Number of bases sequenced / Estimated genome size

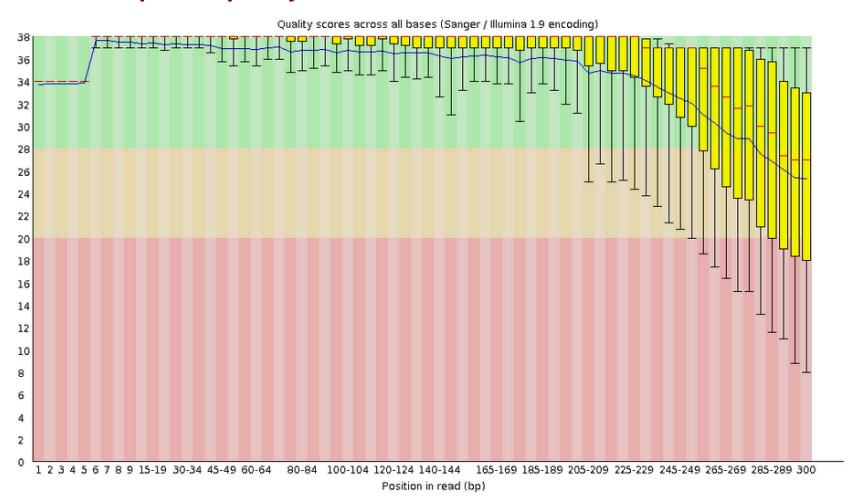
Calculating data quantity

- FastQC / MultiQC summary reports
- Third party scripts
- Command line calculation (my favourite way)
 - Can use Seqtk to convert files to fasta
 - zcat *.fastq.gz | seqtk seq -A | grep -v "^>" | tr -dc "ACGTNacgtn" | wc -m
 - zcat (concatenates the compressed fastq files into one stream)
 - seqtk (converts to fasta format and drops reads less than 10k)
 - grep (-v excludes lines starting with ">", i.e. fasta headers)
 - tr (-dc removes any characters not in set "ACGTNacqtn")
 - wc (-m counts characters)
 - parallel 'seqtk seq -A {} | grep -v "^>" | tr -dc
 "ACGTNacgtn" | wc -m' ::: *.fastq.gz | paste -sd+ |
 bc -l

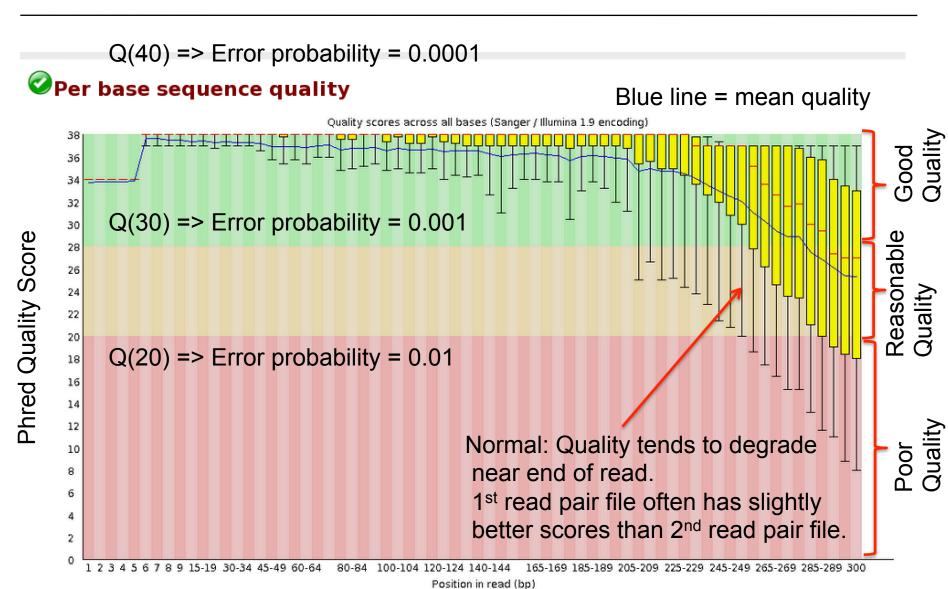

Calculating data quantity

- How much data is too much data?
 - Greater than 200X coverage is considered extreme.
- Why is too much data bad?
 - Increased computation time and resources
 - Errors begin to compound and start to look like real data.
 - Assemblies become more fragmented and inaccurate.
- How should I subsample?
 - Use a random fraction of the reads maintaining read pairing.
 - E.g. Use the same seed (-s) and give the fraction (0.1) in Seqtk.
 seqtk sample -s100 read1.fq 0.1 > sub1.fq
 seqtk sample -s100 read2.fq 0.1 > sub2.fq
 - Normalize uneven coverage (e.g. bbnorm)

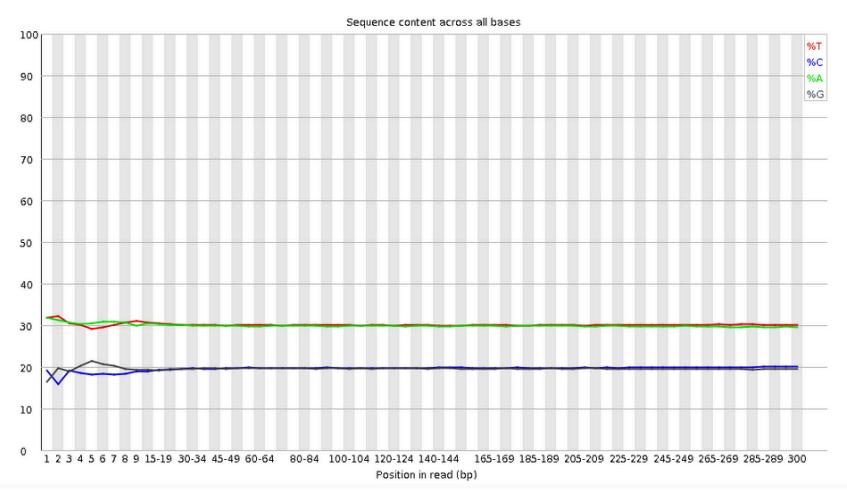
- What does it tell you?
 - Total read pairs
 - Sequence length
 - Quality Score Encoding
 - Average GC%
 - Base quality along the read
 - Nucleotide % along the read
 - Sequence GC content
 - Duplication %
 - Adapter content
- Look at MultiQC for multiple samples

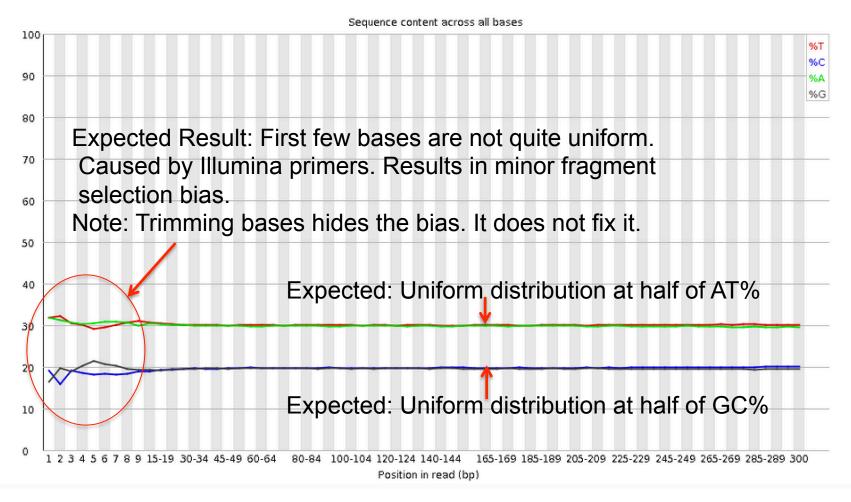


Basic Statistics

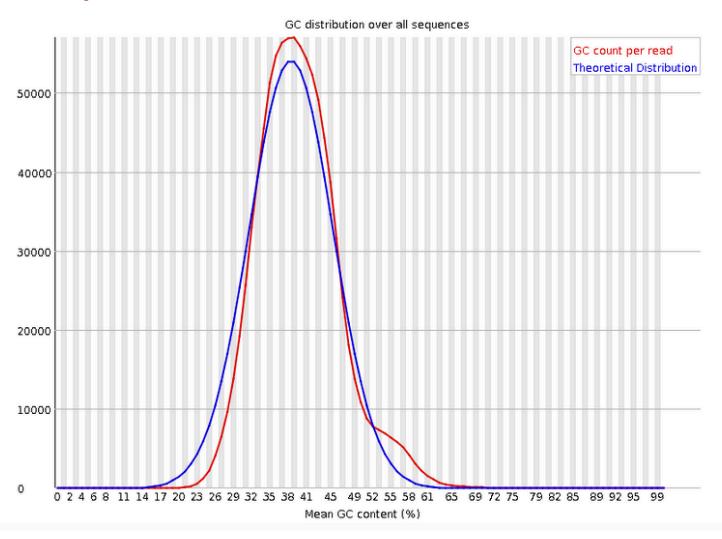

Measure	Value		
Filename	8361-F11_1.fastq.gz		
File type	Conventional base calls		
Encoding	Sanger / Illumina 1.9		
Total Sequences	2809593		
Sequences flagged as poor quality	0		
Sequence length	300		
%GC	39		

Per base sequence quality

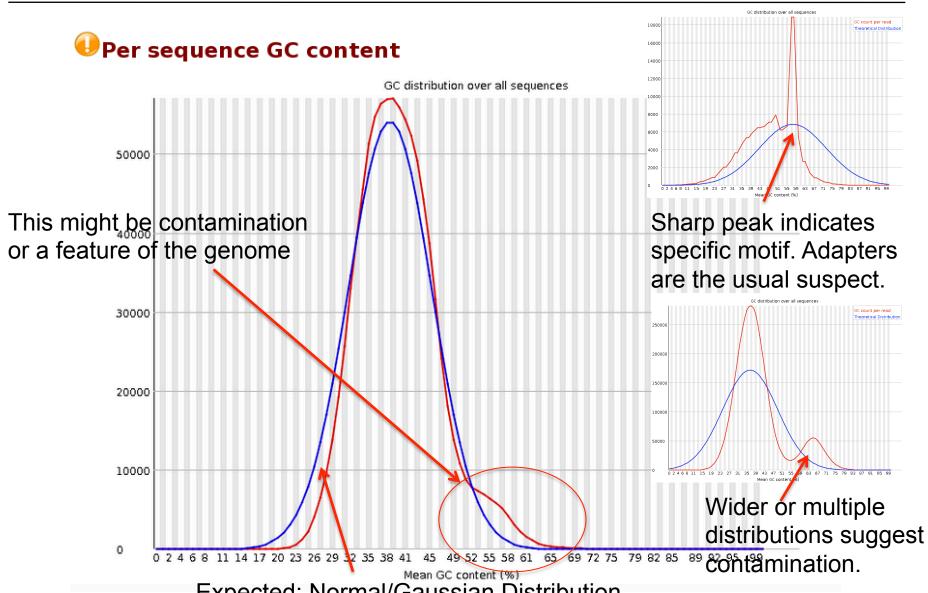




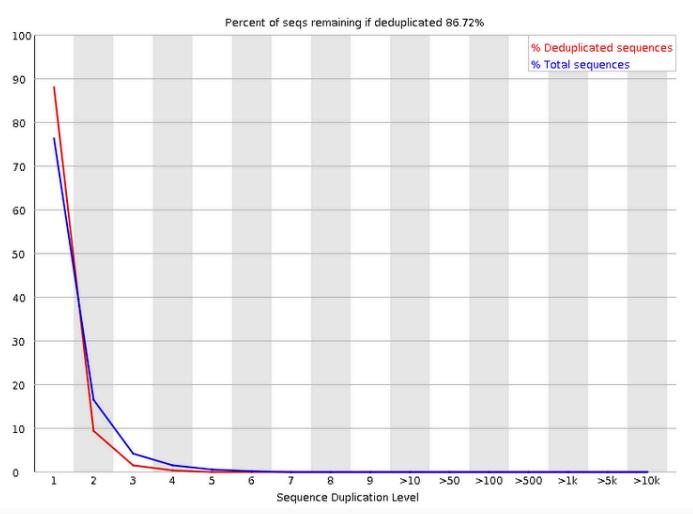
Per base sequence content

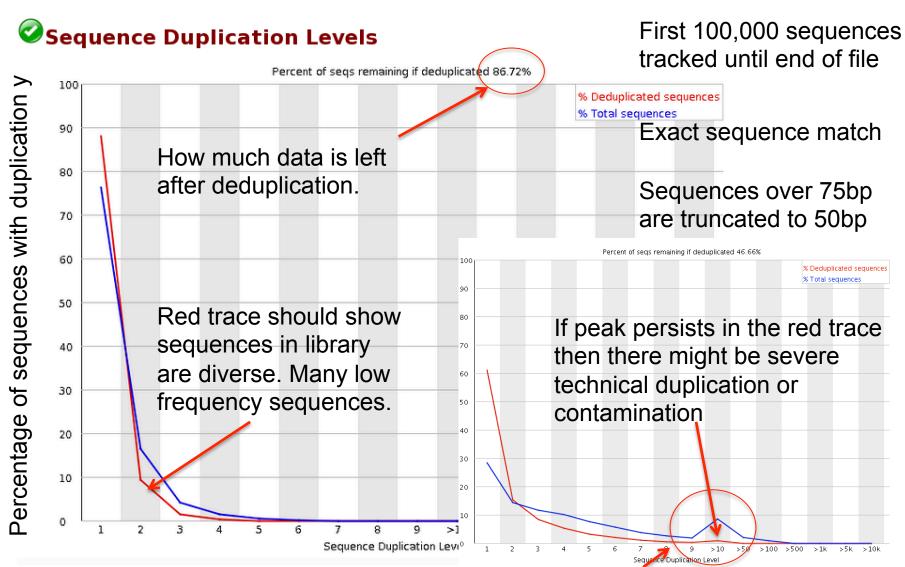


Per base sequence content

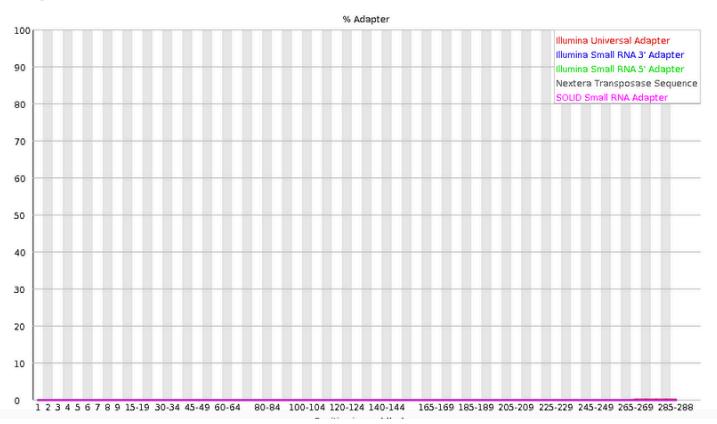


Per sequence GC content




Expected: Normal/Gaussian Distribution

Sequence Duplication Levels


Peak shows 10%+ sequences with high duplication levels

Overrepresented sequences

No overrepresented sequences

⊘Adapter Content

1 2 3 4 5 6 7 8 9 15-19 30-34 45-49 60-64

No overrepresented sequences

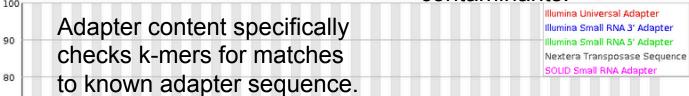
Lists sequence that is more than 0.1%

Adapter Content

70

50

40


30

20

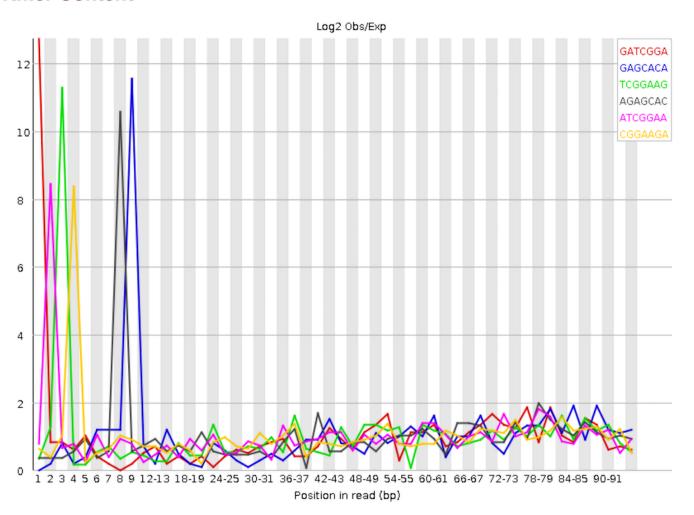
10

First 100,000 sequences tracked until end of file

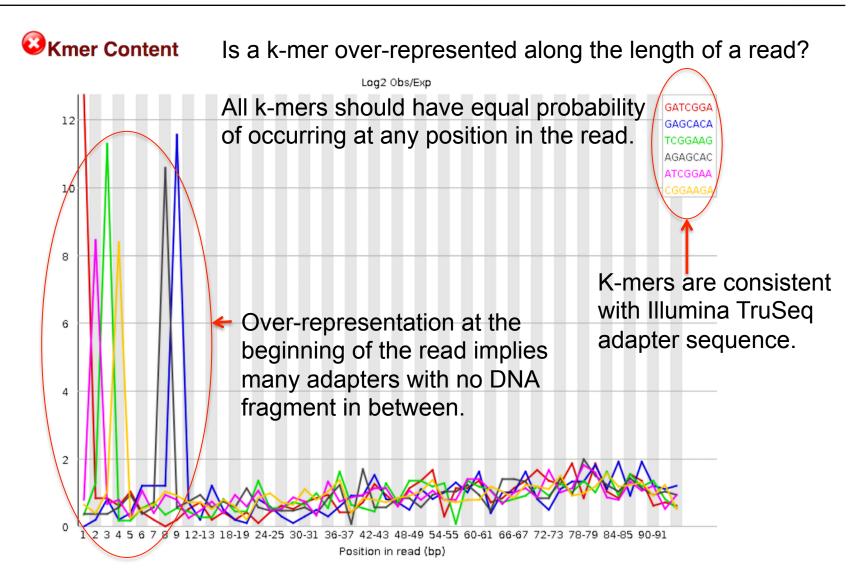
Overrepresented sequences are matched against known contaminants.

% Adapter

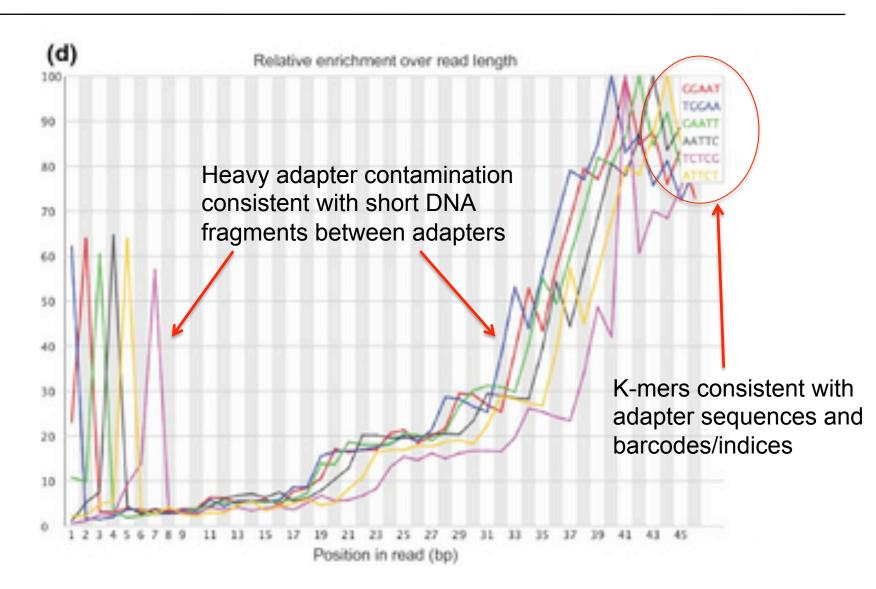
Match hits are not conclusive, but indicative.

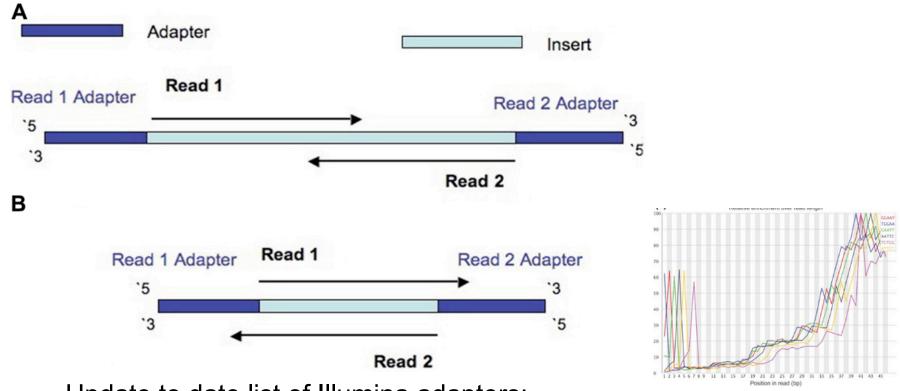

Matches must be >20bp and

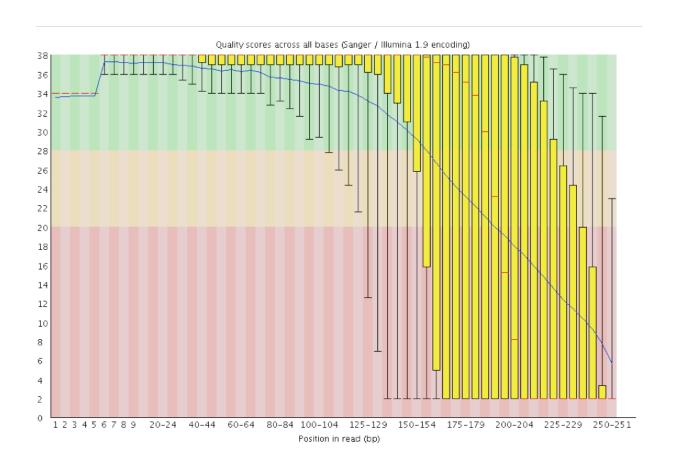
only 1 mismatch. **3**0


Sequence	Count	Percentage	Possible Source
SATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCT	8122	8.122	Illumina Paired End PCR Primer 2 (100% over 40bp)
SATCGGAAGAGCGGTTCAGCAGGAATGCCGAGATCGGAAG	5086	5.086	Illumina Paired End PCR Primer 2 (97% over 36bp)
ATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC	1085	1.085	Illumina Single End PCR Primer 1 (100% over 40bp)
ATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGAAG	508	0.508	Illumina Paired End PCR Primer 2 (97% over 36bp)
ATTATACGGCGACCACCGAGATCTACACTCTTTCCCTAC	242	0.242	Illumina Single End PCR Primer 1 (97% over 40bp)
ATCGGAAGAGCGGTTCAGCAGGAATGCCGAAGATCGGAA	235	0.23500000000000001	Illumina Paired End Adapter 2 (96% over 31bp)
ATCGGAAGAGCGGTTCAGCAGGAATGCGAGATCGGAAGA	228	0.2279999999999998	Illumina Paired End Adapter 2 (96% over 28bp)
ATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGACG	205	0.205000000000000002	Illumina Paired End PCR Primer 2 (97% over 36bp)
ATCGGAAGAGCGGTTCAGCAGGAATGCCGAGGATCGGAA	183	0.183	Illumina Paired End Adapter 2 (100% over 32bp)
ATCGGAAGAGCGGTTCAGCAGGAATGCCGAGGTCGGAAG	183	0.183	Illumina Paired End Adapter 2 (100% over 32bp)
SATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGAACT	164	0.164	Illumina Paired End PCR Primer 2 (97% over 40bp)
SATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGTCT	129	0.129	Illumina Paired End PCR Primer 2 (97% over 40bp)
AATTATACTTCTACCACCTATATCTACACTCTTTCCCTAC	123	0.123	No Hit
SATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGGACT	122	0.122	Illumina Paired End PCR Primer 2 (97% over 36bp)
CCCTTCACCACCAATCCCCACATCCCAACACCCCCTTCACC	113	0 112000000000000000	Illumina Daired End DCD Drimer 2 (96% over 25hn)

&Kmer Content




Default k is 7. K-mer size can be increased with option -k


- Why trim reads?
 - Remove adapter read through.

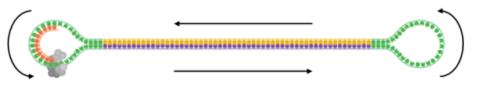
Update to date list of Illumina adapters:
 https://support.illumina.com/downloads/illumina-customer-sequence-letter.html

- Why trim reads?
 - Remove poor quality reads

- Many tools available
 - Trimmomatic
 - CutAdapt
 - AlienTrimmer
 - Sickle
 - Trim Galore
 - Scythe
 - Prinseq
 - ...
- Warning: Some assemblers expect untrimmed input
 - Allpaths-LG
 - Mira

Quality Score encoding Library type **Trimmomatic:** java -jar trimmomatic-0.36.jar(PE)-phred33 Input file pair input forward.fq.gz input reverse.fq.gz output forward paired.fq.gz output forward unpaired.fq.gz Output output reverse paired.fq.gz output reverse unpaired.fq.gz ILLUMINACLIP: TruSeq3-PE.fa: 2:30:10 LEADING: 3 TRAILING: 3 SLIDINGWINDOW: 4:15 MINLEN: 36 How to trim and Fasta file of sequences to what to keep remove (adapters, linkers, etc)

• BBMerge can be used to discover adapters: bbmerge.sh in=reads.fq outa=adapters.fa


Duplication Removal

- Why do duplicates arise?
 - Optical duplicates (amplified cluster mistaken for multiple clusters)
 - PCR duplicates
- Why are duplicates bad?
 - Poor overlap information
 - Increased variance of coverage
 - Increased computation time and resources
- How to remove duplicates:
 - Prinseq
 - FastUniq
 - ParDRe
 - **—** ...

PacBio Sequencing

SMRTbell™ Template

Polymerase Read

Definition:

- Sequence of nucleotides incorporated by polymerase while reading a template
- Includes adapters
- Often called "read"
- Includes adapters
- 1 molecule, 1 pol. read

Purpose:

- QC of instrument run
- Benchmarking

Subread

Definition:

- Single pass of template
- Adapters removed
- 1 molecule, ≥1 subreads

Unique data:

- Kinetic measurements
- Rich QVs

Purpose:

For subsequent analysis

Read of Insert

Definition:

- Represents highest-quality single-sequence for an insert, regardless of number of passes
- Generalizes CCS for <2 passes and RQ <0.9
- 1 or more passes
- 1 molecule, 1 read

Purpose:

- For Library QC
- For subsequent analysis

PacBio Sequencing


```
m140415_143853_42175_c100635972550000001823121909121417_s1_p0/553/3100_11230
```

- 1. " m " = movie
- 2. Time of Run Start (yymmdd_hhmmss)
- 3. Instrument Serial Number
- 4. SMRT Cell Barcode
- 5. Set Number (a.k.a. "Look Number". Deprecated field, used in earlier version of RS)
- 6. Part Number (usually " po ", " xo " when using expired reagents)
- 7. ZMW hole number †
- 8. Subread Region (start_stop using polymerase read coordinates) †

† Note that Fields 7 and 8 are used as sequence IDs in FASTA|FASTQ files. They are not used in filenames.

PacBio Sequencing


```
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/109/0_4936 RQ=0.879
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/109/4981_9942 RQ=0.879
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/109/9988_10378 RQ=0.879
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/157/0_7588 RQ=0.871
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/157/7628_15139 RQ=0.871
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/157/15186_22778 RQ=0.871
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/157/22820_30464 RQ=0.871
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/157/22820_30464 RQ=0.871
@m150619_093250_42174_c100795682550000001823166309091510_s1_p0/157/30510_36641 RQ=0.871
```

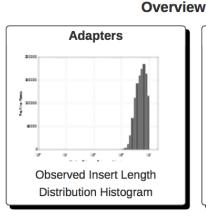
- The subreads fastq file contains all the subreads from a SMRT movie.
- The reads from a ZMW after adapter removal are oriented in the direction forward, reverse, forward, and so on.
- Read Quality (RQ) Assignment: A trained prediction of a read's mapped accuracy based on its pulse and base file characteristics (peak signal-tonoise ratio, average base QV, interpulse distance, and so on).
- Quality Value (QV): The total probability that the basecall is an insertion or substitution or is preceded by a deletion. QV = -10 * log10(p).

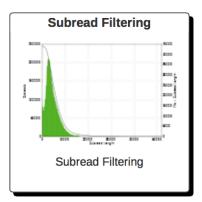
Do I have enough data?

- What is my expected genome size?
- What depth of coverage should I expect?
 - PacBio:
 - 70x coverage in total from subreads per allele
 - At least 30x coverage of reads >10kb per allele
- Coverage = Number of bases sequenced / estimated genome size

SMRT Cells: 72

11/30/2015

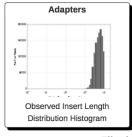

Reports for Job pb_251_1_subreads_CTR

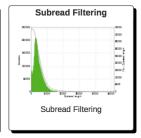

Movies: 72

Reports for Job pb 251 1 subreads CTR

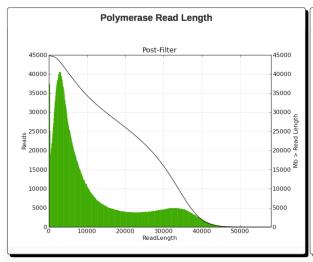
Job Metric	Value		
Adapter Dimers (0-10bp)	0.06%		
Short Inserts (11-100bp)	0.01%		
Number of Bases	44,946,763,242		
Number of Reads	3,918,307		
N50 Read Length	24,367		
Mean Read Length	11,470		
Mean Read Score	0.85		

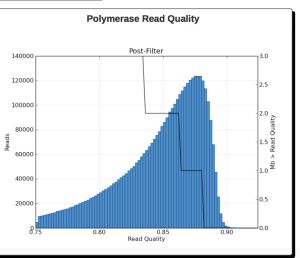
Calculating data quantity



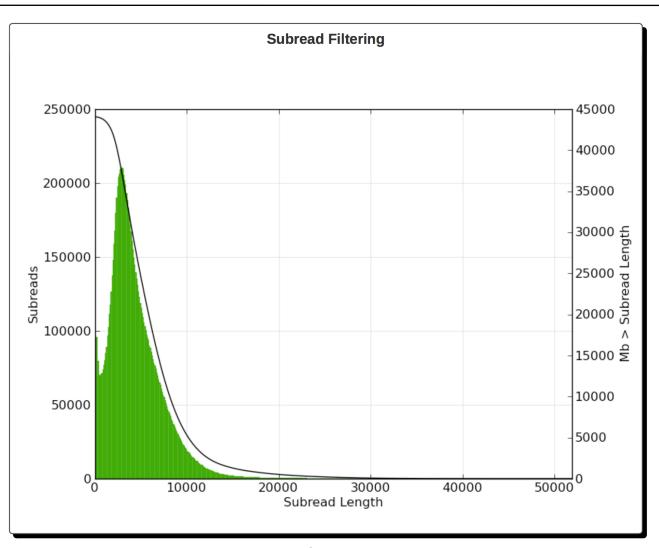

- Third party scripts
- Command line calculation (my favourite way)
 - Can use Seqtk to convert and filter on read length
 - zcat *.fastq.gz | seqtk seq -A -L 10000 | grep -v
 "^>" | tr -dc "ACGTNacgtn" | wc -m
 - zcat (concatenates the compressed fastq files into one stream)
 - seqtk (converts to fasta format and drops reads less than 10k)
 - grep (-v excludes lines starting with ">", i.e. fasta headers)
 - tr (-dc removes any characters not in set "ACGTNacqtn")
 - wc (-m counts characters)
 - parallel 'seqtk seq -A -L 10000 {} | grep -v "^>" |
 tr -dc "ACGTNacgtn" | wc -m' ::: *.fastq.gz | paste
 -sd+ | bc -l

SMRT Portal Report


Job Metric Value Adapter Dimers (0-10bp) 0.06% Short Inserts (11-100bp) 0.01% 44,946,763,242 Number of Bases Number of Reads 3,918,307 24,367 N50 Read Length 11,470 Mean Read Length Mean Read Score 0.85



Filtering


Filtering							
Metrics	Pre-Filter	Post-Filter					
Polymerase Read Bases	49236076578	44946763242					
Polymerase Reads	10821024	3918307					
Polymerase Read N50	23758	24367					
Polymerase Read Length	4550	11470					
Polymerase Read Quality	0.319	0.846					

SMRT Portal Report

Adapters

Adapter Dimers (0-10bp) 0.06% Short Inserts (11-100bp) 0.01%

SMRT Portal Report

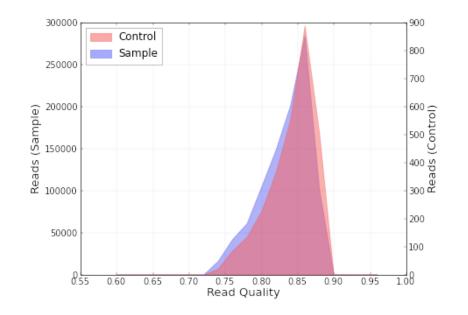
Loading

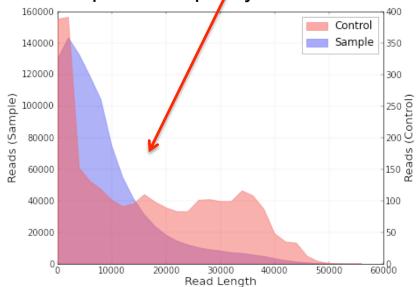
SMRT Cell ID	Productive ZMWs	ZMW Loading For Productivity 0	ZMW Loading For Productivity 1	ZMW Loading For Productivity 2
m151122_235521_42203_c100927002550000001823210705121641	150,292	50.73%	40.19%	9.08%
m151124_195105_42237_c100966232550000001823205304301611	150,292	40.75%	51.31%	7.94%
m151122_151707_42203_c100927102550000001823210705121617	150,292	57.69%	33.55%	8.75%
m151114_001837_42237_c100926912550000001823210705121673	150,292	56.6%	31.53%	11.87%
m151105_141536_42237_c100884702550000001823198604021655	150,292	35.48%	55.12%	9.4%
m151107_172533_42237_c100926842550000001823210705121675	150,292	40.2%	46.18%	13.63%
m151123_082023_42237_c100927112550000001823210705121606	150,292	61.16%	31.51%	7.34%
m151125_042931_42237_c100966232550000001823205304301613	150,292	44.14%	47.93%	7.93%

SMRT cell loading

- P0: % of ZMWs that are empty with no polymerase
- P1: % of ZMWs that are productive and sequencing
- P2: % of ZMWs that are not P0 or P1 (e.g. unbound polymerase, more than one molecule in a well (overloaded cell)).
- Maximize P1 and minimize P0 + P2.
- High P0 indicates underloading (too low concentration of molecules)
- High P2 indicates overloading (too high concentration) or poor prep.

Control reads

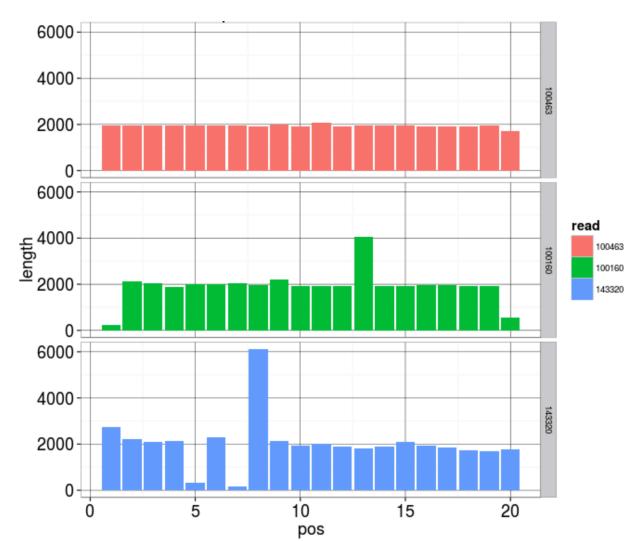



 SMRT portal does not filter out control reads unless the protocol is included.

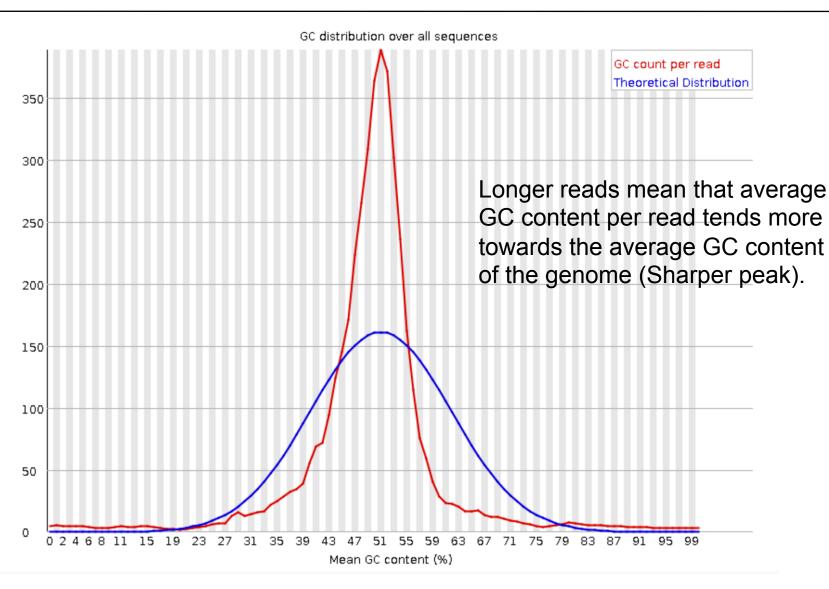
Control Sequence
Fraction Control Reads
Control Polymerase Read Length N50
Control Polymerase Read Length

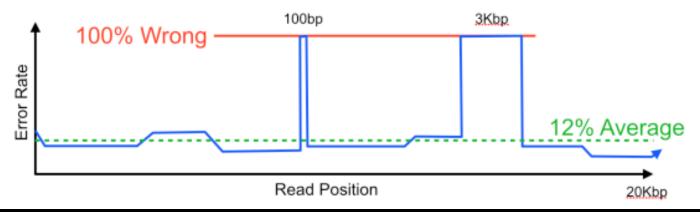
2kb_Control 0.0028828862522167057 29699.0 14950 Number of Control Reads 2775
Control Subread Accuracy 0.861804283567377
Control Polymerase Read Length 95% 39372

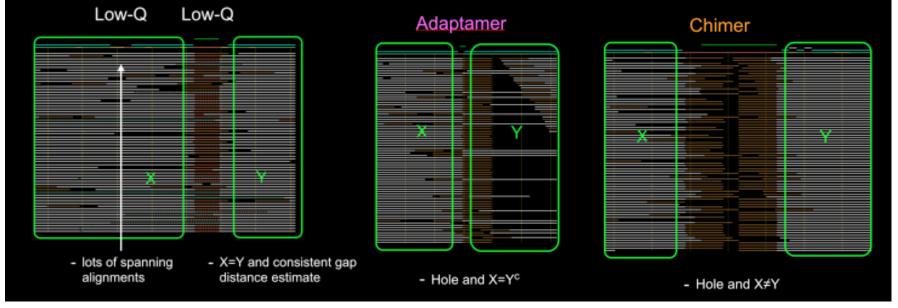
Control reads are longer than Sample reads indicating good sequencing but bad Sample DNA quality



Adapter Trimming

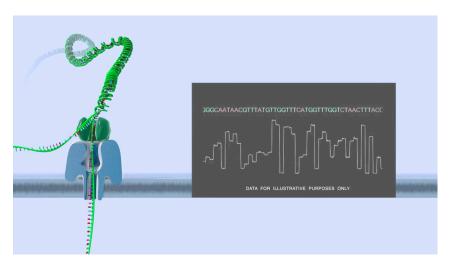

SMRTbell adapter: ATCTCTCTCTCCTCCTCCTCCTCTGTTGTTGAGAGAGAT

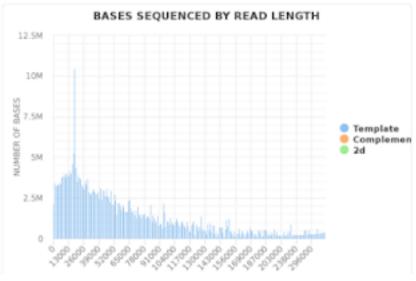




Read Errors

Quality score is inferred from the light signal. Strong light signal does not imply correct base calls.





Nanopore sequencing

- Single Molecule sequencing
- No fragmentation required, therefore read length is theoretically unlimited. (Pacbio has size selected library)
- Support is limited to the ONT community portal.
- Limited QC tools.
 - Poretools (output summary)
 - Porechop (adapters)

Summary

- Illumina
 - Md5sum
 - Format
 - Data Quantity
 - Quality Scores
 - GC Content
 - Nucleotide bias
 - Duplication
 - Adapter content
 - Fragment distribution

- PacBio / Nanopore
 - Md5sum
 - Format
 - Data Quantity
 - GC Content

- Adapter & Control check
- Subread distribution

Information on sequence QC issues

- Sequencing Fail https://sequencing.qcfail.com
- SEQanswers
 http://seqanswers.com
- BioStar <u>https://www.biostars.org</u>
- Bioinformatics StackExchange https://bioinformatics.stackexchange.com