

K-mer and contaminant analysis

- What is a k-mer?
 - A k-mer is a sequence of nucleotides of length k.
 - Examples of a 6-mer
 - ACGTCT
 - TGACTA
 - GATCCC
- A read of length L has L-k+1 k-mers.

How many k-mers are distinct in your genome?

- Chr 1 of yeast strain s288c
 - Haploid
 - Linear, but plotted as circle
 - Black: position along chromosome
 - K-mer frequency in genome
 - K=27
 - Red: 1
 - Purple: 2
 - Green: 3
 - Blue: 4
 - Orange: 5
 - Grey: 6+
 - Majority of k-mers are distinct.

Frequency of those k-mers in the sequence data set

x-axis: Frequency of the distinct k-mer in the data y-axis: Count of distinct k-mers with frequency x

Contig from A.thaliana phased genome

Frequency of those k-mers in the sequence data set

x-axis: Frequency of the distinct k-mer in the data y-axis: Count of distinct k-mers with frequency x

Frequency of those k-mers in the sequence data set

x-axis: Frequency of the distinct k-mer in the data y-axis: Count of distinct k-mers with frequency x

Estimating Genome Size

- We can use coverage to estimate genome size
 - The peak with the largest k-mer multiplicity is the mean k-mer coverage across the genome.
 - N = M * L / (L K + 1)
 - N is Depth of Read Coverage
 - M is mean k-mer coverage
 - L is read length
 - K is k-mer size
 - G = T / N
 - G is the genome size
 - T is the total number of bases

Estimating Genome Size

• Not so easy: estimating complexity

Estimating Genome Size

SciLifeLab

• Distribution decomposition analysis

- kat_distanalysis.py --plot kat.hist

Tetraploid genome copy number spectra

GC Content in depth

#

Monitor GC Bias •

Simulated data

GC bias in Standard Illumina protocol

kmer matches

ACTCAGGATTA GC=4 Count=1 AATAGCCGGGG GC=7 Count=2

GC Content in depth

• Monitor GC Bias

Simulated data

GC bias in Standard Illumina protocol

kmer matches

ACTCAGGATTA GC=4 Count=1 AATAGCCGGGG GC=7 Count=2

GC Content in depth

- Uncover contamination
 - Separate bacteria from eukaryote
 - Separate organelle from nuclear genome

What can k-mers tell us?

- Comparing k-mer counts between data reveals biases
 - R1 vs R2
 - Lib1 vs Lib2

What can k-mers tell us?

- Comparing k-mer counts between data reveals biases
 - R1 vs R2
 - Lib1 vs Lib2

Data comparison

R1 vs R2

Standard vs PCR free

 PCR free captures data missing in standard protocol

SciLif

[ab

Data comparison

Data comparison

K-mer Filtering

- K-mer based analyses provides a lot of information about the information within your data.
- K-mer filtering can be used to assist exploratory analyses.
 - Digital normalization can help to process uneven coverage.
 - Error correction can be used to remove low frequency errors.
 - Frequency based filtering can separate organelles or contamination for assembly.

PacBio and Nanopore Quality

- PacBio and Nanopore have greater error rates per base. This precludes many analyses that one can do with Illumina data.
 - K-mer analyses are not feasible because there are too many unique k-mers in the reads.
 - Reads of Insert / CCS reads require at least 30x coverage in order to increase the accuracy to the necessary threshold.
 - Biases and data differences are more difficult to detect.
 - K-mer based contamination analyses have lower accuracy.

Contamination Analyses

- Read based contamination analyses are tricky
 - Entirely dependent on your reference database
 - Short k-mer matching increases alignment to multiple targets
 - Unrelated organisms can contain similar strings of nucleotides

FastQ Screen

Summary

- K-mer analyses are limited by:
 - sufficient depth of coverage
 - sequence error rates
- K-mer analyses can:
 - Help estimate genome size and infer ploidy
 - Detect library biases within and between data sets
 - Help find contaminants
- K-mer based filtering can make data easier to work with
- Contamination assessment:
 - Entirely dependent on your subject database
 - Loss of accuracy with shorter strings