SCiLiﬁLab

_ Martin Norling
~ Uppsala, November 15t 2016

NB:2S

Sequencing recap

 This lecture is focused on illumina, but the

techniques are the same for all short-read
sequencers.

* Short reads are (generally) high quality and
highly cost efficient.

Why is it hard to assemble genomes?

Good quality assembly demands:

* High quality samples

 Well prepared sequencing libraries

* Good sequencing runs

* Sequence aware processing and assembly
* Correct result interpretation

What do we need?

Read Length Coverage Quality

@, 3 O’

o< @
h

~

Expected Contig Length

8
3%

ssooos
ksg
++

€8
£3

Reads & mates must be longer High coverage is required Errors obscure overlaps

than the repeats — Oversample the genome to ensure — Reads are assembled by finding

— Short reads will have false overlaps every base is sequenced with long kmers shared in pair of reads
forming hairball assembly graphs overlaps between reads — High error rate requires very short

- With long enough reads, assemble — Biased coverage will also fragment seeds, increasing complexity and
entire chromosomes into contigs assembly forming assembly hairballs

NB:2S

Assembly strategies

Most people can come up with some strategy to
assemble reads into sequences, but coming up
with an effective and efficient strategy is
difficult.

We will look at two of the most common
strategies:

* Overlap, Layout, Consensus (commonly OLC)
e De Bruijn Graph based (sometimes DBG)

Random Reads

ACAGTGGCTGGGCGGATGACCCGACCTCTATGTCGTTGCCCGGCCCCTATCGAAGGCGAGTCATGAAGATGCACACGTTGTGTCCCACTACTGAACCCTC

CAGTGGCTGGG GATGACCCGAC TCTATGTCGTT CCCGGCCCCTA GAAGGCGAGTC TGAAGATGCAC GTTGTGTCCCA TACTGAACCCT
CAGTGGCTGGG TGACCCGACCT TATGTCGTTGC CGGCCCCTATC AAGGCGAGTCA GAAGATGCACA TTGTGTCCCAC ACTGAACCCTC

TGGCTGGGCGG CGACCTCTATG GTTGCCCGGCC TATCGAAGGCG GTCATGAAGAT CACACGTTGTG CCACTACTGAA
GGCTGGGCGGA CGACCTCTATG TGCCCGGCCCC ATCGAAGGCGA TCATGAAGATG TGTGTCCCACT
GGCTGGGCGGA GACCTCTATGT TGCCCGGCCCC ATCGAAGGCGA CATGAAGATGC TGTGTCCCACT
GGCTGGGCGGA GACCTCTATGT TGCCCGGCCCC TCGAAGGCGAG CATGAAGATGC TGTCCCACTAC
GGCTGGGCGGA ACCTCTATGTC GCCCGGCCCCT GAAGGCGAGTC GAAGATGCACA TCCCACTACTG

GCTGGGCGGAT ACCTCTATGTC GCCCGGCCCCT AGGCGAGTCAT AAGATGCACAC TCCCACTACTG
GGCGGATGACC ACCTCTATGTC GCCCGGCCCCT GCGAGTCATGA ATGCACACGTT TCCCACTACTG
GCGGATGACCC ACCTCTATGTC CCCGGCCCCTA AGTCATGAAGA GCACACGTTGT CCACTACTGAA
CGGATGACCCG CTCTATGTCGT CCCGGCCCCTA ATGAAGATGCA ACTACTGAACC
ACCTCTATGTC CCGGCCCCTAT GAAGATGCACA ACTACTGAACC
CTCTATGTCGT GGCCCCTATCG AAGATGCACAC CTACTGAACCC
CTCTATGTCGT GCCCCTATCGA AGATGCACACG CTACTGAACCC
CTCTATGTCGT CCCCTATCGAA AGATGCACACG CTACTGAACCC
TCTATGTCGTT CCCCTATCGAA CACACGTTGTG ACTGAACCCTC
TCTATGTCGTT CCCCTATCGAA ACTGAACCCTC
CTATGTCGTTG CCTATCGAAGG
CTATGTCGTTG
CTATGTCGTTG
ATGTCGTTGCC
TGTCGTTGCCC
GTCGTTGCCCG

\\

Graphs!

To get a long sequence out of short sequences

they’'re piled up into a graph.

A graph is basically a @" '@
set of nodes (in our
case seguence reads) —E E’

connected by edges.
Directed, cyclic graph with 5 nodes

(vertices) and 5 edges

Overlap Layout Consensus (OLC)

This is the “naive” way of doing assembly, but
also a very good way of doing assembly if the
data allows it!

Algorithm has three stages:
1. Overlap — Find overlaps between reads

2. Layout — Collapse overlap graph into contigs

3. Consensus — Find consensus sequence for
each contig

X

S
.

Overlap

The basic idea is to find all overlaps between all
reads, and creating a graph. This operation is
extremely costly.

There are optimizations:
e Suffix trees
* Indexes

But OLC is still always computationally
expensive.

Layout

The graph from find all read overlaps can be
extremely complex, so first the graph is reduced.
There are different ways of doing this but
commonly:

* Edges are removed if they can be inferred
from other edges

* Edges with low support are assumed to be
sequencing errors and removed.

Consensus

The final part is quite straight forward; try to
find the most likely base for each position based
on the graph.

OLC

Pros: Utilizes long reads well — fewer, longer
reads are less expensive to overlap, and OLC can
make use of the entire long reads.

Cons: Time consuming and requires large
amounts of memory.

\\

De Bruijn Graph based assembly

sequence ATGGAAGTCGCGGAATC

ATGGAAG
mers TGGAAGT

de Bruijn graph

ATGGAAG [TGGAAGT [GGAAGTC [GAAGTCG [AAGTCGC [AGTCGCG

| GTCGCGG [TCGCGGA [CGCGGAA [GCGGAAT [CGGAATC

\'\

De Bruijn graph construction

ATGGAAGTCGATGGAAG

ATGGAAG
TGGAAGT

GGAAGTC

GAAGTCG
AAGTCGA

AGTCGAT
GICGATG

Tedraaa

GATGGAA
ATGGAAG

[

ATGGAAG [TGGAAGT [GGAAGTC [GAAGTCG [AAGTCGA [AGTCGAT

L.

GTCGATG

—

TCGATGG

—>

CGATGGA

|—>

GATGGAA

NB:2S

Sequence Assembly via De Bruijn Graphs

a Generate all substrings of length k from the reads

~ k-mers (k=5)

b Generate the De Bruijn graph

C A)

Sequencing error or SNP

-':H:H:B-

From Martin & Wang, Nat. Rev. Genet. 2011

b Generate the De Bruijn graph

C g)

Sequencing error or SNP

(03~ G - Gone i - A
(605~ G~ G)

Deletion or intron

o O D ED ED e D EDES
e

¢ Collapse the De Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011

e Assembled isoforms @ =00 ceeaa-

From Martin & Wang, Nat. Rev. Genet. 2011

De Bruijn

Pros: Computationally efficient, can work with large coverage
short read datasets

Cons: Sensitive to sequence errors, connection between
assembly and read is lost, does not work so well with longer

reads

\\

Assemblathon 2

e Uses 454, lllumina, and PacBio for three large eukaryote
genomes: a bird, a fish, and a snake

e Bird - lllumina 14 libraries, 454, PacBio
* Fish - lllumina, 8 libraries
 Snake - lllumina, 4 libraries

 Teams take the data, perform assemblies with whatever tools
they wish, and then submit their results => teams are
evaluated more than individual programs!

GigaScience 2013, 2:10
| <

Assemblathon 2

Table 1 Assemblathon 2 participating team details
Team name Team identifier Number of assemblies Sequence data used Institutional affiliations

Principal assembly

submitted for bird assembly software used
Bird Fish Snake
ABL ABL 1 0 0 4 + | Wayne State University HyDA
ABySS ABYSS 0 1 1 Genome Sciences Centre, British ~ ABySS and Anchor
Columbia Cancer Agency
Allpaths ALLP 1 1 0 | Broad Institute ALLPATHS-LG
BCM-HGSC ~ BCM 2 1 1 44| +P Baylor College of Medicine SeqPrep, KmerFreq, Quake,
Human Genome Sequencing BWA, Newbler, ALLPATHS-LG
Center Atlas-Link, Atlas-GapfFill,
Phrap, CrossMatch, Velvet,
BLAST, and BLASR
CBCB CBCB 1 0 0 44+1+P University of Maryland, National ~ Celera assembler and PacBio
Biodefense Analysis and Corrected Reads (PBcR)
Countermeasures Center
CoBiG? COBIG 1 0 0 4 University of Lisbon 4Pipe4 pipeline, Seqclean,
Mira, Bambus2
CRACS CRACS 0 0 1 Institute for Systems and ABYSS, SSPACE, Bowtie, and
Computer Engineering of Porto ~ FASTX
TEC, European Bioinformatics
Institute
CSHL CSHL 0 3 0 Cold Spring Harbor Laboratory, ~ Metassembler, ALLPATHS,

Yale University, University of
Notre Dame

NB:S

SOAPdenovo

Assemblathon 2 - Bird vs. Snake

Scaffold NG(X) length

100,000,000 ' 100,000,000 '
- | a
—— 1 1
et — i '
B—— :
10,000,000 - = - 10,000,000 \ ;
£ :
' ~N% '
= :
1,000,000 1 : seA = 1,000,000 1 . e
: ——ALLP £ : —S0AP
: ——SOAP H : —BCM
i —— ABL 3 ; —RAY
100,000 : —PHUS S 100,000 . CURT
; .
! —BCM 2 ' GAM
: ~——RAY § : —PHUS
10,000 ' —MLK @ 10,000 ; ~—MERAC
1 ~—MERAC H ——SGA
; !
! —NEWB ' —SYMB
y !
i —CBCB ~—— ABYSS
1,000 ; 1,000 ;
- H
y !
y !
; !
! !
100 i T T 100 T

60 70

NG(X) %

NB:2S

Assemblathon 2 recommendations

Based on the findings of Assemblathon 2, we make a few broad suggestions to
someone looking to perform a de novo assembly of a large eukaryotic genome:

1. Don’t trust the results of a single assembly. If possible, generate several
assemblies (with different assemblers and/or different assembler parameters).
Some of the best assemblies entered for Assemblathon 2 were the evaluation
assemblies rather than the competition entries.

2. Do not place too much faith in a single metric. It is unlikely that we would have
considered SGA to have produced the highest ranked snake assembly if we had
only considered a single metric.

3. Potentially choose an assembler that excels in the area you are interested in
(e.g., coverage, continuity, or number of error free bases).

4. If you are interested in generating a genome assembly for the purpose of genic
analysis (e.g., training a gene finder, studying codon usage bias, looking for intron-
specific motifs), then it may not be necessary to be concerned by low N50/NG50
values or by a small assembly size.

5. Assess the levels of heterozygosity in your target genome before you assemble
(or sequence) it and set your expectations accordingly.
O

A

S
.

Programs
Some Assembly Praopiems

There are way more assembly programs than
algorithms, so if they use the same algorithm,
why do they produce different results?

There are of course tons of tweaks and

heuristics that make assemblers differ quite a lot
from each other.

Here are some examples of common assemblers
and how they work!

ABYSS

ABySS — “Assembly By Short Sequences” —is a
relatively basic de bruijn graph based assembler,
with a strong focus on parallelization.

The assembler has two steps; (1) de Bruijn graph
contig contruction and (2) contig joining with
paired-end/mate-pair information.

Errors are handled by iterative removal of short

“dead-end” branches and removal of small
bubbles.

AllPaths-LG

ALLPATHS-LG (Large Genome) is a de Bruijn
assembler specially tuned for handling large
genomes, and as such it requires at least one
mate-pair library and one paired-end library for
assembly.

AllPaths does error correction on reads based
on kmer abundances, is highly memory efficient
to allow large assemblies, and adaptive to better
handle low coverage regions.

\\

A

S
.

MaSuRCA

MaSuRCA uses de Bruijn graphs to create unique
extensions of all reads into what they call super
reads. These reads are then assembled by OLC,
as the super read construction (ideally) creates a
data set of hundredfold fewer, longer reads

than the original data.

SOAPdenovo?2

SOAPdenovo2 uses “sparse” de Bruijn graphs by
using a method similar to the super reads from
MaSuRCA, as well as multiple kmer sizes in
order to allow faster and more memory efficient
graph construction.

Uses paired/mate-pair information in a second
step to join and scaffold contigs.

SPAdes

SPAdes uses another de Bruijn graph variant. It
creates a multisized de Bruijn graph using
several kmer sizes. This graph is then directly
manipulated using paired information into a
paired assembly graph. This graph is then
collapsed into contigs.

... and MANY more

Name | Algorithm Data

Abyss De Bruijn lllumina
Allpaths-Ig De Bruijn lllumina/PacBio
CABOG (Celera) OLC All

Falcon OLC PacBio

HGAP OLC PacBio

Masurca De Bruijn/OLC All

Mira “oLc” All

Newbler OLC 454/Illumina/Torrent
SGA String lllumina
SoapDeNovo De Bruijn lllumina

Spades De Bruijn lllumina (PacBio)

In short — there is endless ways to implement these algorithms

NB:2S

A first look at assemblies: QUAST

e QUAST, Quality Assessment
Tool for Genome
Assemblies

Produces a basic report of
common statistics, such as
N50, number of contigs, etc.

QUAST

Quality Assessment Tool for Genome Assemblies by Center for Algorithmic Biotechnology

10 October 2016, Monday, 06:45:47

Al statistics are based on contigs of size >= 500bp, unless otherwise noted (e.g

contigs (>

Statistics without reference ~ spades

contigs
contigs (>= 0 bp) 401
126
82
contigs (>= 10000 bp) 78
= 25000 bp) 57
contigs (>= 50000 bp) 36
287425
5036721
Total length (>= 0 bp) 5077287
ength (>= 1000bp) 5001630
S000bp) 4906904

10000 bp)
Total length (>= 25000 bp)
Total length (>= 50000 bp) 3798672

NS0 89113
N73 50257
150 18
75 Eg
cco 39.4
Mismatches

#Ns 0
#N's per 100 kbp 0

Plots: Cumulative length Nx CC content

36th conti
3798672, spades

20 a0 50 0

Contigs are ordered from largest (contig #1) to smallest

0 bp)" and “Total length (>

160thcontig

0 bp)" include all contigs.)

@ spades

Contig graphs

Plots: Cumulative length Nx NGx GC content
6 CLC_contigs

Mira_all_contigs
Mira_large_contigs
Mira_trimmed_data_contigs
_____________ SPAdes_contigs
/____,___,'————————-——" SPAdes_scaffolds
SPAdes_trimmed_data_contigs
reference

0 50 100 150 200 250 300 350 400 450th contig

NB:S

Contigs are ordered from largest (contig #1) to smallest.

Nx graphs

Plots: Cumulative length Nx NGx GC content
<=450kbp

CLC_contigs
Mira_all_contigs
Mira_large_contigs
400 Mira_trimmed_data_contigs
SPAdes_contigs
SPAdes_scaffolds
SPAdes_trimmed_data_contig
350
300
250
48.791%:
200 . 103 120, SPAdes_scaffolds
89464, SPAdes contigs
88 904, SPAdes_trimmed_data_contigs
83493, CLC_contigs
150 . 55299, Mira_all_contigs
55299, Mira_large_contigs
33881,
22 764, Mira_trimmed_data_contigs
00| &_‘_‘_‘:
50 »
0

0 10 20 30 40 50 60 70 80 920 x=100%

Now let’s get-assembling!

