Sequence Data Quality Assessment Exercises.

Starting Note: Please do not copy and paste the commands. Characters in this document may not be copied correctly. Please type the commands and use **<tab> complete** for commands, directories and long names.

Loading Modules:

First do **module load bioinfo-tools** and then

FastQC: module load FastQC/0.11.5

Seqtk: module load seqtk/1.0-r68e

Trimmomatic: module load trimmomatic/0.32

1. Use **md5sum** to calculate the checksum of all data files in

/proj/g2016024/nobackup/QC_Data/.

Redirect (> operator) the output into a file called **checksum.txt** in your workspace.

2. Make a copy of the data in your workspace (note the . at the end):

```
cp -vr /proj/g2016024/nobackup/QC_Data/* .
```

Use **md5sum** with the **-c** option and **checksum.txt** to check the files are complete.

- 3. Use **file** to test the files. In what format is the data compressed?
- 4. Use zcat and head to view the first 8 lines of Bacteria/bacteria_R1.fastq.gz.
- 5. From which sequencing technology is

- a. Bacteria/bacteria_R{1,2}.fastq.gz
- b. Ecoli/E01_1_135x.fastq.gz
- 6. What is each part of the FastQ header?

@HWI-ST486:212:D0C8BACXX:6:1101:2365:1998 1:N:0:ATTCCT

7. What is each part of this FastQ header?

```
@m151121_235646_42237_c100926872550000001823210705121647_
s1_p0/81/22917_25263
```

8. What does each tool in this command do?

- 9. Use the command above to calculate how much data is in
 - a. Bacteria/bacteria_R{1,2}.fastq.gz
 - b. Ecoli/E01_1_135x.fastq.gz
- 10. How much data in **Ecoli/E01_1_135x.fastq.gz** are contained in reads 10kb or longer?
- 11. Run FastQC (fastqc) on the data files:

fastqc -t 6 Bacteria/*.fastq.gz Ecoli/*.fastq.gz
How many sequences are in each file (use either fastqc or firefox to
open the html)?

- 12. What is the average GC% in each data set?
- 13. Which quality score encoding is used?

- 14. What does a quality score of 20 (Q20) mean?
- 15. What does a quality score of 40 (Q40) mean?
- 16. For **Bacteria/bacteria_R{1,2}.fastq.gz**, in the per base sequence plot, what percentage should the G and C lines be at, and why?
- 17. For **Bacteria/bacteria_R{1,2}.fastq.gz**, in the per base sequence plot, what percentage should the A and T lines be at, and why?
- 18. What distribution should the per base sequence plot follow?
- 19. What distribution should the per base GC plot follow?
- 20. What value should the per base GC distribution be centered on?
- 21. How much duplication is present in

Bacteria/bacteria_R{1,2}.fastq.gz?

- 22. What is adapter read through?
- 23. After loading Trimmomatic look at **\$TRIMMOMATIC_HOME/adapters** using
 - ls \$TRIMMOMATIC HOME/adapters.

This folder contains adapter sequence files from various library preparation kits.

Trim Bacteria/bacteria_R{1,2}.fastq.gz using the TruSeq3-PE.fa file.

java -jar \$TRIMMOMATIC_HOME/trimmomatic.jar PE
bacteria_R1.fastq.gz bacteria_R2.fastq.gz
bacteria_R1.trimmed.paired.fastq.gz
bacteria_R1.trimmed.unpaired.fastq.gz

bacteria_R2.trimmed.paired.fastq.gz

bacteria_R2.trimmed.unpaired.fastq.gz

ILLUMINACLIP:\$TRIMMOMATIC_HOME/adapters/TruSeq3-

PE.fa:2:3:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36