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Chromatin state and gene expression

PEV

Position effect
variegation

in Drosophila eye
(nature.com)

First observed by
H. Muller
1930

Juxtaposition of eye colour genes with heterochromatin results in the “mottled” eye
colouration (red and white).

Proteins, which bind heterochromatin, act to “spread” the silencing signal by
providing a forward feedback loop.

Heterochromatin Protein 1; Histone methyltransferase Su(var)3-9; H3K9
methylation
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ChlP-seq workflow
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ChIP Library construction
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Peak calling

Analysis and visualization

Liu, Pott and Huss, BMC Biology 2010
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[ design study J Workflow of a ChIP-seq study

obtain input chromatin
perform precipitation

construct library

Wet lab

sequence library

bioinformatic analysis



Critical factors

Antibody selection

Proper control sample (input chromatin or mock IP)
Library cloning and sequencing

Algorithm for peak detection

Enough material and biological replicates

Reproducibility in chromatin fragmentation
Cross-linker choice



Experiment design

Sound experimental design: replication, randomisation and
blocking (R.A. Fisher, 1935)

In the absence of a proper design, it is essentially impossible
to partition biological variation from technical variation

Sequencing depth: depends on the structure of the signal;

cannot be linearly scaled to genome size

Single- vs. paired-end reads: PE improves read mapping

confidence and gives a direct measure of fragment size, which
otherwise has to be modelled or estimated



Experiment design

Chip

replicates library/sequencing

input
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Ideal design:
Each sample has a matched input
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Biological replicates and randomisation

libraries sequencing

X sample technical replicates are generally a waste of time
and money

>2 biological replicates for site identification
23 biological replicates for differential binding

samples replicates libraries i .
| P seauencng many studies do not account for batch

X origin W effects
experiment w . .
I. time
. . . ii. Origin

experimentl experiment2 Experiment3... libraries, sequencing, etc



Importance of sequencing depth

pooled data

if you need to pool your data, then it is under-sequenced

under-sequenced data




Sequencing depth depends on data type

Chromatin

Transcription Chromatin Remodellers

Factors Remodellers

, Histone marks
Histone marks

RNA polymerase |l
point-source mixed signal broad signal
Human: TF: 20 M ? ?

H3K4me3: 25 M H3K36me3: 35 M H3K27me3: 40 M
H3K9me3: >55 M

No clear guidelines for mixed and broad type of peaks

Source: The ENCODE consortium; Jung et al, NAR 2014



ChlP — sequencing: introduction from a
bioinformatics point of view

Principles of analysis of ChIP-seq data

ChlP-seq: downstream analyses

Resources



* ChIP —sequencing: introduction from a
bioinformatics point of view



Chromatin = DNA + proteins
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Data analysis




Rank the steps of data analysis of a ChIP-seq experiment by

importance to the final result

peak calling

read filtering
and mapping

alignment
processing

post-alignment
quality control




design stud
sh STEY Workflow of a ChIP-seq study
obtain input chromatin

perform precipitation

construct library

Wet lab

sequence library

library quality control
filter sequences

align sequences

/ﬁlter alignments \ Iterative process

identify peaks / regions of enrichment

assess data quality

understand the data / results

J

vownstream analyses




ChlP — sequencing: introduction from a
bioinformatics point of view

Principles of analysis of ChIP-seq data

ChlP-seq: downstream analyses

Resources



Two questions to address

* 1. Did the ChIP part of the ChIP-seq
experiment work? Was the enrichment
successful?

e 2. Where are the binding sites (of the protein
of interest)?



Word of caution!

ChlP-seq experiments are more unpredictable
than RNA-seq!

Error sources:
chromatin structure
PCR over-amplification
non-specific antibody
other things?



ChlP-seq QC: did the ChlP work?

e 1. Inspect the signal (mapped reads, coverage
profiles) in genome browser

* 2. Compute peak-independent quality metrics
(cross correlation, cumulative enrichment)

e 3. Assess replicate consistency (correlations
between replicates of the same condition)
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How do | know my data is of good quality?

Library complexity
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Quality control: tag uniqueness — library complexity
metric

Sequence duplication level > 80% (low complexity library)

Sequence Duplication Level »>= 84.56%

225 “Duplicate relative to unique
200
175
150
125
100

75

FastQC
Babraham Institute

50

25

Sequence Duplication Level

NRF: Non-redundant fraction (of reads): proportion of unique tags / total



How do | know my data is of good quality?

Objective (i.e. peak independent)
metrics to quantify enrichment in
ChIP-seq;

for TF in mammalian systems:
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Strand cross-correlation

The correlation between signal of the 5’ end of reads on the (+) and (-) strands is assessed
after successive shifts of the reads on the (+) strand and the point of maximum correlation
between the two strands is used as an estimation of fragment length.
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Strand cross-correlation
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cross—correlation
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fraction w.r.t. bin with highest coverage
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Cumulative enrichment aka “Fingerprint”
is another metric for successful enrichment
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Diaz et al, Genome Biol 2012
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Peak calling

appropriate methodologies depend on data type

Chromatin

Transcrlptlon Chromatin Remodellers

Factors Remodellers

_ Histone marks
Histone marks

RNA polymerase |l
punctate mixed signal broad signal
SPP ) )
MACS2

MACS?2 in broad mode, windows approaches

This is an active area of algorithm development



Principle of peak detection
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Tag count

P(s)

Generate signal profile Define background
along each chromosome (model or data)

~

Tag shift

Control
data

Tag count

I ™ peak region

Position (bp)

Enrichment relative
Position (bp) l

to background

Tag count

Position (bp)
Assess significance

Filter artifacts

Tags

Sth resh
/

»

Position (bp)

Pepke, 2009



Point-source vs. broad peak detection

Sequence-specific binding (TFs) Distributed binding (histones, RNApol2)
A B
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/\*‘
sequenced section Sense strand
(“tag” or “read") ChIP enriched fragments

NN | PNV

Antisense strand
ChIP enriched fragments

NN
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reference genome reference genome

sense lag;% E
Wilbanks 2010



Peak calling program

Comparison of peak calling algorithms

MACS
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Spp mtc, —
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PeakSeq
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MCPF “FoxA1
“ NRSF

Sole-Search

CisGenome

Core peaks

0 5 10 15 20

Number of Peaks (thousands)

Peak overlap (Ho et al, 2012)

/L >50 %

N\ 20 %

Wilbanks 2010



Percentage of total reads

“Hyper-chippable” regions

Types of reads in blacklisted regions
(ENCODE data)
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DER — Duke Excluded Regions

(11 repeat classes)

UHS — Ultra High Signal

(open chromatin)

DAC — consensus excluded regions

Reads mapped to these regions should be
filtered out prior to peak calling

Tracks available from UCSC for human,
mouse, fly and worm

Carroll et al, Front Genet 2014



ENCODE

Quality considerations \(.Q)ﬂ)(

ChIP-seq quality guidelines from the ENCODE project (Relative
strand cross-correlation, Irreproducible discovery rate)

Antibody validation

Appropriate sequencing depth (depending on genome size and

peak type). For human genome and broad-source peaks, min.
40-50M reads is required.

Experimental replication
Fraction of reads in peaks (FRiP) > 1%

Cross correlation (correlation of the density of sequences aligned to
opposite DNA strands after shifting by the fragment size)

Experimental verification of known binding sites (and sites not
bound as negative controls)



ChlP-exo: improvement in binding site
identification
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Other functional genomics techniques

Chromatin
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Clifford et al, Nature Rev Genet, 2014



ChlP — sequencing: introduction from a
bioinformatics point of view

Principles of analysis of ChIP-seq data

ChlP-seq: downstream analyses

Resources
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ChlPseq downstream analyses

* Validation (wet lab)

* Downstream analysis

| A
— Motif discovery IAC ﬁéié;gg? Ac

— Annotation - .

— Integration of binding and expression data

— Integration of various binding datasets
— Differential binding

‘ Tall Gatal
o
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Signal visualisation and interpretation

A\ [deepTooIs ]

ngsplots
segMiner

e Clustering

* Heatmaps

* Profiles

 Comparison of
different datasets

Binding profile of a TF in relation to the transcription start site




ChlP — sequencing: introduction from a
bioinformatics point of view

Principles of analysis of ChIP-seq data

ChlP-seq: downstream analyses

Resources



Further reading

Impact of artifact removal on ChIP quality metrics in ChIP-seq and ChlIP-
exo data. Carrol et al, Front. Genet. 2014

Impact of sequencing depth in ChIP-seq experiments. Jung et al, NAR 2014

ChIP-seq guidelines and practices of the ENCODE and modENCODE
consortia. Landt et al, Genome Res. 2012

http://genome.ucsc.edu/ENCODE/qualityMetrics.html#definitions

https://www.encodeproject.org/data-standards




Bioconductor ChlP-seq resources

General purpose tools:
— Rsubread (read mapping; not ideal for global alignment)
— Rbowtie (global alignment)
— GenomicRanges (tools for manipulating range data)
— Rsamtools (SAM / BAM support)
— htSeqTools (tools for NGS data; post-alignment QC)
— chipseq (utilities for ChIP-seq analysis)

Peak calling
— SPP
— BayesPeak (HMM and Bayesian statistics)
— MOSAICS (model-based one and two Sample Analysis and Inference for ChIP-Seq)
— iSeq (Hidden Ising models)
— ChlIPsegR (developed to analyse nucleosome positioning data)
— Csaw (a pipeline for ChIP-seq analysis, including statistical analysis of differential occupancy)

Quality control
— ChIPQC
Differential occupancy
— edgeR
— DESeqg2
— DiffBind (compatible with objects used for ChIPQC, wrapper for DESeq and edgeR DE functions)

Peak Annotation
— ChlIPpeakAnno (annotating peaks with genome context information)
— ChIPSeeker (functional annotation of peaks)



The Epigenomics Roadmap Project

LS
= =l

http://www.roadmapepigenomics.org/

* Reference human epigenomes

* DNA methylation, histone modifications, chromatin
accessibility and small RNA transcripts

* Stem cells and primary ex vivo tissues
e 111 tissue and cell types
* 2,804 genome-wide datasets



Questions?

agata.smialowska@nbis.se



ChlP — sequencing: introduction from a
bioinformatics point of view

Principles of analysis of ChIP-seq data

ChlP-seq: downstream analyses

Resources

Exercise overview



Exercise

1. Quality control

2. Read preprocessing

3. Peak calling

4. Exploratory analysis (sample clustering)
5. Visualisation



cross—correlation

Did my ChlIP work?
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Exploratory analysis
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That’s all for now,

time to do some hands-on work






Library quality control and preprocessing

e FastQC/ Prinseq

 Trim adapters if any adapter sequences are present in the reads (as
determined by the QC)

* |In some cases, you’ll observe k-mer enrichment (especially if the data is
ChIP-exo, a new variation of ChlP-seq) — it is not necessarily a bad thing, if
sequence duplication levels are low; however it may indicate low
complexity of the library — a warning sign that the enrichment in ChIP was
not successful or the libraries are over-amplified (often the latter is the
consequence of the former)



Mapping reads to the reference genome

Choose the right reference: assembly version (not always the newest is
best) and type (primary assembly, or assembly from individual
chromosome sequences + non-chromosomal contigs; not the top level
assembly); choose the matching annotation file (GTF, GFF)

Read mapping: global alignment

Mappers (= aligners): Bowtie, BWA, BBMap, Novoalign, ... (lots of tools are
available)

Visualise data in genome browser
— BAM files or tracks (wig, bedgraph, bigWig)
— Local (IGV) or web-based (UCSC genome browser)
— Data quality assessment



Cross-correlation profiles, RSC and NSC

Metrics to quantify the fragment length signal and the ratio of fragment
length signal to read length signal

Relative Cross Correlation (RSC) - ChlP to artifact signal

CC(Fragment length)-min (CC)
CC (read length) — min (CC)
Normalised Cross Correlation (NSC)

CC(Fragment length)
min (CC)

__________________________________________

TFs: fragment lengths are often greater than the size of the DNA binding
event, the distinct clustering of (+) and (-) reads around this site is very
apparent

NSC>1.1 (higher values indicate more enrichment; 1 = no enrichment)
RSC>0.8 (0 = no signal; <1 low quality ChIP; >1 high enrichment
Broad peaks: this clustering may be more diffuse (fragment length < peak)



