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Differential binding

image source: Dai-Ying Wu  et al. 2015, frontiers in Genetics

❖ Quantifying binding signal, e.g. in peaks regions

❖ Performing statistical analysis to discover quantitative changes between 

experimental groups

❖ i.e. to decide whether for a given region, an observed difference is 

significant, greater than would be expected just due to natural random 
variation



DiffBind
❖ helps define consensus peak set 

for analyses

❖ counts reads in the peaks regions

❖ calculate a binding matrix with 

scores based on read counts for 
every sample (normalised affinity 
scores)


❖ allows to set-up different contrasts 
for comparisons


❖ uses gene expression methods 
(edgeR or DESeq2) to compare 
regions




DiffBind: DESeq2
❖ matrix of raw counts is 

constructed for the contrast

❖ the raw number of reads in the 

control sample is subtracted

❖ library size is computed for use 

in subsequent normalisation, by 
default as in total number of 
reads in peaks


❖ dispersion is estimated 

❖ nbinomWaldTest function is used 

to test for significance of 
coefficients in negative bionomial 
GLM model




Different flavours 
Differential transcription factor binding 

image source: Dai-Ying Wu  et al. 2015, frontiers in Genetics
Identifying differential transcription factor binding in ChIP-seq

❖ Compared 6 ENCODE dataset to illustrate the impact of data processing under different study 
design


❖ The performance of normalisation methods depends strongly on the variation in total amount of 
protein bound between conditions, with total read count outperforming effective library size, 
when a large variation in binding was studied


❖ Use of input subtraction to correct for non-specific binding showed a relatively modest impact 
on the number of differentially peaks found and fold change accuracy


❖ Validation using fold-change estimates from qRT-PCR suggests there is still room for methods 
improvement…



Different flavours 
sliding windows: de novo detection 

Example of ChIP-seq read coverage of H3K27me3 occurring in broad domains across the genome compared 
to other histone marks like H3K4me3 occurring in precisely defined peaks. Source: Heining et al., 2015, BMC 
Bioinformatics

❖ Region-derived or peaks-based differential binding may be problematic:

❖ if regions derived are not independent of the DB status fo these regions

❖ if regions are called with imprecise boundaries

❖ for protein-targets with broad enrichment, when histone marks shift or spread 

between conditions 

❖ Example methods: csaw, histoneHMM


csaw



Different flavours 
universe of methods

Briefings in Bioinformatics, 17(6), 2016, 953–966 



Functional annotations 

“Functional annotations is defined as the process of collecting 
information about and describing a gene’s biological identity: 
its various aliases, molecular function, biological role(s), sub-

cellular location etc.” 

genomic regions

genes 
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biological knowledge



Functional annotations 
Over-representation analysis 

❖ Widely used approach to identify biological themes is based on hypergeometric model to assess 
whether the number of selected genes is larger than expected


❖ To determine whether any terms annotate a specified list genes at frequency greater than that would 
be expected by chance, calculates p-value using the hypergeometric distribution


❖ N, total number of genes in the background distribution

❖ M, number of genes within that distribution that are annotated to the node of interest

❖ n, size of the list of genes of interest 

❖ k, number of genes within that list are annotated to the node




Functional annotations 
Gene Set Enrichment Analysis 

❖ Over-representation analysis will not detect a situation where the difference is small 
but demonstrated in a coordinated way in a set of related genes


❖ GSEA aims to address this limitation, all genes can be used

❖ GSEA aggregates the per gene statistics across genes within a gene set

❖ Genes are ranked based on the statistics

❖ Given a priori defined set of genes S (e.g. genes sharing the same GO category), 
the goal of GSEA is to determine whether the member of S are randomly distributed 
throughout the ranked gene list (L) or primarily found at the top or bottom


GSEA



Functional annotations 
it all depends on 
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Functional annotations 
in the practicals 

Downstream analysis

❖ annotatePeakInBatch() to annotate peaks to nearest TSS 
using TSS.human.GRCh37 precompiled BiomaRt data


❖ assigning chromosome regions with 
assignChromosomeRegion() function: peaks distributions 
over genomic features


❖ over-representation of GO terms with getEnrichedGO() 
function


❖ over-representation of REACTOME pathways with 
getEnrichedPATH() function


ChIPpeakAnno



Functional annotations 
in the practicals ChIPseeker
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Peaks annotations and visualisations
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