

NGI-ChiPseq

Processing ChIP-seq data at the National Genomics Infrastructure

Phil Ewels phil.ewels@scilifelab.se NBIS ChIP-seq tutorial 2018-11-08

- Scilifelab NGI

Our mission is to offer a state-of-the-art infrastructure for massively parallel DNA sequencing and SNP genotyping, available to researchers all over Sweden

SciLifeLab

- Scilifelab NGI

We provide

guidelines and support

for sample collection, study
design, protocol selection and
bioinformatics analysis

- NGI Organisation

- NGI Organisation

- Project timeline

- Methods offered at NGI

- ChIP-seq: NGI Stockholm

- You do the ChIP, we do the seq
- Rubicon ThruPlex DNA (NGI Production)
 - Min 1 ng input
 - Min 10 μl
 - 0.2-10 ng/μl
 - Ins. size 200-800 bp
 - Approx 1000 kr / prep

SciLifeLab

- ChIP-seq: NGI Stockholm

- You do the ChIP, we do the seq
- Rubicon ThruPlex DNA (NGI Production)
- Typically run SE 50bp
 - Illumina HiSeq High Output mode v4, SR 1x50bp
 - ~1300 kr / sample (40M reads)

- ChIP-seq: NGI Stockholm

- You do the ChIP, we do the seq
- Rubicon ThruPlex DNA (NGI Production)
- Typically run SE 50bp
- Start by organising a planning meeting

https://ngisweden.scilifelab.se

- ChIP-seq Pipeline

- Takes raw FastQ sequencing data as input
- Provides range of results
 - Alignments (BAM)
 - Peaks (optionally filtered)
 - Quality Control
- Pipeline in use since early 2017 (on request)

- ChIP-seq Pipeline

- Takes raw FastQ sequencing data as input
- Provides range of results
 - Alignments (BAM)
 - Peaks (optionally filtered)
 - Quality Control
- Pipeline in use since early 2017 (on request)

ChIP-seq Pipeline

nf-core/chipseq 💢

FastQ

BAM

FastQC

TrimGalore!

BWA

Samtools, Picard

Phantompeakqualtools

deepTools

NGSPlot

MACS2

Bedtools

MultiQC

Sequence QC

Read trimming

Alignment

Sort, index, mark duplicates

Strand cross-correlation QC

Fingerprint, sample correlation

TSS / Gene profile plots

Peak calling

Filtering blacklisted regions

Reporting

BED

HTML

Nextflow

nexiflow

- Tool to manage computational pipelines
- Handles interaction with compute infrastructure
- Easy to learn how to run, minimal oversight required

SciLifeLab

I NGI stockholm

- Nextflow

nextlow

```
#!/usr/bin/env nextflow

cheers=Channel.from "Bonjour","Ciao","Hello","Hola"

process sayHello {
  input:
  val x from cheers

"""
  echo $x world!
"""
}
```


- Nextflow

nextlow

```
#!/usr/bin/env nextflow

input = Channel.fromFilePairs( params.reads )
process fastqc {
  input:
  file reads from input

  output:
  file "*_fastqc.{zip,html}" into results

  script:
  """
  fastqc -q $reads
  """
}
```


Nextflow

```
#!/usr/bin/env nextflow
input = Channel.fromFilePairs( params.reads )
process fastqc {
  input:
 file reads from input
  output:
 file "*_fastqc.{zip,html}" into results
  script:
                          fastqc -q $reads
                          process {
```

Default: Run locally, assume software is installed

Use environment modules


```
executor = 'slurm'
clusterOptions = { "-A b2017123" }
cpus = 1
                                   Submit jobs to SLURM queue
memory = 8.GB
time = 2.h
$fastqc {
  module = ['bioinfo-tools', 'FastQC']
```

- Nextflow

```
#!/usr/bin/env nextflow

input = Channel.fromFilePairs( params.reads )
process fastqc {
  input:
  file reads from input

  output:
  file "*_fastqc.{zip,html}" into results

  script:
  """
  fastqc -q $reads
  """
}
```



```
executor = 'slurm'
clusterOptions = {
cpus = 1
memory = 8.GB
time = 2.h
$fastqc {
  module = ['bioinfo-tools', 'FastQC']
```

```
docker {
  enabled = true
}

process {
  container = 'biocontainers/fastqc'

  cpus = 1
  memory = 8.GB
  time = 2.h
}
```

Run locally, use docker container for all software dependencies

nf-core

BEATSON INSTITUTE

International Agency for Research on Cancel

https://nf-co.re/

Home Pipelines Usage Developers Tools About

A community effort to collect a curated set of analysis pipelines built using Nextflow.

VIEW PIPELINES

For facilities

Highly optimised pipelines with excellent reporting. Validated releases ensure reproducibility.

For users

Portable, documented and easy to use workflows.
Pipelines that you can trust.

For developers

Companion templates and tools help to validate your code and simplify common tasks.

Nextflow is an incredibly powerful and flexible workflow language.

nf-core pipelines adhere to strict guidelines - if one works, they all will.

Nextflow is an incredibly powerful and flexible workflow language.

nf-core pipelines adhere to strict guidelines - if one works, they all will.

Documentation

Extensive documentation covering installation, usage and description of output files ensures that you won't be left in the dark.

CI Testing

Every time a change is made to the pipeline code, nf-core pipelines use continuousintegration testing to ensure that nothing has broken.

Travis CI

Stable Releases

nf-core pipelines use GitHub releases to tag stable versions of the code and software, making pipeline runs totally reproducable.

Docker

Software dependencies are always available in a bundled docker container, which Nextflow can automatically download from dockerhub.

Singularity

If you're not able to use Docker, built-in support for Singularity can solve your HPC container problems. These are built from the docker containers.

Bioconda

Where possible, pipelines come with a bioconda environment file, allowing you to set up a new environment for the pipeline in a single command.

Get started in minutes

Nextflow lets you run nf-core pipelines on virtually any computing environment.

nf-core pipelines come with built-in support for <u>AWS iGenomes</u> with common species.

The nf-core companion tool makes it easy to list all available nf-core pipelines and shows which are available locally. Local versions are checked against the latest available release.

```
# Install nextflow
curl -s https://get.nextflow.io | bash
mv nextflow ~/bin

# Launch the RNAseq pipeline
nextflow run nf-core/RNAseq \
    -profile standard,docker \
    --genome GRCh37 \
    --reads "data/*_{R1,R2}.fastq.gz"

# Install nf-core tools
pip install nf-core
# List all nf-core pipelines and show available updates
nf-core list
```

Pipelines

Browse the **16** pipelines that are currently available as part of nf-core.

Available Pipelines

Can you think of another pipeline that would fit in well? Let us know!

nf-core/rnafusion 🛕

Version **1.1.1**

Published 3 months ago

Published 3 months ago

meth + MethylDackel

Version 1.1

nf-core/chipseq

https://github.com/nf-core/chipseq

- nf-core/chipseq

EE README.md

nf-core/chipseq Results

The nf-core/chipseq documentation is split into a few different files:

- installation.md
 - Pipeline installation and configuration instructions
- usage.md
 - Instructions on how to run the nf-core/chipseq pipeline
- output.md
 - Document describing all of the results produced by the pipeline, and how to interpret them.

- Running nextflow

Step 1: Install Nextflow

 Uppmax - load the Nextflow module module load nextflow

 Anywhere (including Uppmax) - install Nextflow curl -s https://get.nextflow.io | bash

Step 2: Try running nf-core/chipseq pipeline nextflow run nf-core/chipseq --help

- Running NGI-ChiPseq

Step 3: Choose your reference

- Common organism use iGenomes
 - --genome GRCh37
- MACS peak calling config file
 - --macsconfig config.csv

Step 4: Organise your data

- One (if single-end) or two (if paired-end) FastQ per sample
- Everything in one directory, simple filenames help!

SciLifeLab

- Running NGI-ChiPseq

Step 5: Run the pipeline on your data

 Remember to run detached from your terminal screen / tmux / nohup

Step 6: Check your results

Read the Nextflow log and check the MultiQC report

Step 7: Delete temporary files

• Delete the ./work directory, which holds all intermediates

· Using UPPMAX

```
nextflow run nf-core/chipseq
  -profile uppmax
  --project b2017123
  --genome GRCh37 --macsconfig p.txt
  --reads "data/*_R{1,2}.fastq.gz"
```


- Default config is for UPPMAX
 - Knows about central iGenomes references
 - Uses centrally installed software

Using other clusters

```
nextflow run nf-core/chipseq
-profile hebbe
--bwaindex ./ref --macsconfig p.txt
--reads "data/*_R{1,2}.fastq.gz"
```


- Can run just about anywhere
 - Supports local, SGE, LSF, SLURM, PBS/Torque, HTCondor, DRMAA, DNAnexus, Ignite, Kubernetes

Using Docker

```
nextflow run nf-core/chipseq
-profile standard,docker
--fasta genome.fa --macsconfig p.txt
--reads "data/*_R{1,2}.fastq.gz"
```


- Can run anywhere with Docker
 - Downloads required software and runs in a container
 - Portable and reproducible.

Using AWS

```
nextflow run nf-core/chipseq
  -profile aws
  --genome GRCh37 --macsconfig p.txt
  --reads "s3://my-bucket/*_{1,2}.fq.gz"
  --outdir "s3://my-bucket/results/"
```


- Runs on the AWS cloud with Docker
 - Pay-as-you go, flexible computing
 - Can launch from anywhere with minimal configuration

- Input data

ERROR ~ Cannot find any reads matching: XXXX NB: Path needs to be enclosed in quotes! NB: Path requires at least one * wildcard! If this is single-end data, please specify --singleEnd on the command line.

```
--reads '*_R{1,2}.fastq.gz'
```

--reads '*.fastq.gz' --singleEnd

- --reads sample.fastq.gz
- --reads $*_R{1,2}.fastq.gz$
- --reads '*.fastq.gz'

- Read trimming

- Pipeline runs TrimGalore! to remove adapter contamination and low quality bases automatically
 - Use --notrim to disable this
- Some library preps also include additional adapters

```
--clip_r1 [int]
--clip_r2 [int]
--three_prime_clip_r1 [int]
--three_prime_clip_r2 [int]
```


- Blacklist filtering

- Some parts of the reference genome collect incorrectly mapped reads
 - Good practice to remove these peaks
- Pipeline has ENCODE regions for Human & Mouse
- Can pass own BED file of custom regions
 - --blacklist_filtering
 - --blacklist regions.bed

- Broad Peaks

- Some chromatin profiles don't have narrow, sharp peaks
 - For example, H3K9me3 & H3K27me3
- MACS2 can call peaks in "broad peak" mode
 - Pipeline uses default qvalue cutoff of 0.1
 - --broad

- Extending Read Length

- When using single-end data, sequenced read length is shorter than the sequence fragment length
- For DeepTools, need to "extend" the read length
 - Set to 100bp by default. Use this parameter to customise this value.
 - Expected fragment length sequence read length
 - --extendReadsLen [int]

- Saving intermediates

- By default, the pipeline doesn't save some intermediate files to your final results directory
 - Reference genome indices that have been built
 - FastQ files from TrimGalore!
 - BAM files from STAR (we have BAMs from Picard)
 - --saveReference
 - --saveTrimmed
 - --saveAlignedIntermediates

- Resuming pipelines

- If something goes wrong, you can resume a stopped pipeline
 - Will use cached versions of completed processes
 - NB: Only one hyphen!
 - -resume
- Can resume specific past runs
 - Use nextflow log to find job names
 - -resume job_name

```
SciLifeLab
```


- Customising output

-name	Give a name to your run. Used in logs and reports
outdir	Specify the directory for saved results
saturation	Run saturation analysis, subsampling reads from 10% - 100%
email	Get e-mailed a summary report when the pipeline finishes

- Nextflow config files

- Can save a config file with defaults
 - Anything with two hyphens is a params

```
./nextflow.config
```

```
~/.nextflow/config
```

-c /path/to/my.config

```
params {
   email = 'phil.ewels@scilifelab.se'
   project = "b2017123"
}
```

```
SciLifeLab

I NGI stockholm
```

- nf-core/chipseq config

```
NEXTFLOW \sim version 0.30.1
 Launching `/home/travis/build/nf-core/chipseq/main.nf` [determined_ekeblad] - revision:
 b11db350eb
     Tun Name
Reads
Data Type
Genome

Seq Best Practice

determined_ekeblad

data/*{1,2}* foo'

Poi
  nf-core/chipseq : ChIP-Seq Best Practice v1.0dev
                      : data/*{1,2}*.fastq.gz
Genome : false
Fasta Ref : https://github.com/nf-core/test-datasets/raw/chipseq/reference/genome.fa
                      : https://github.com/nf-core/test-datasets/raw/chipseq/macsconfig.txt
 MACS Config
 Saturation analysis : false
                    : false
 MACS broad peaks
 Blacklist filtering : false
Extend Reads : 100 bp

Container : nfcore/chipseq:latest

Output dir : ./results

Script dir : /home/travis/build/nf-core/chipseq

• false
                        : false
 Save Trimmed
 Save Intermeds
                        : false
Trim R1
Trim R2
Trim 3' R1
Trim 3' R2
 Config Profile
                        : test,docker
                        : phil.ewels@scilifelab.se
 Email
```

- Version control

- Version control

- Pipeline is always released under a stable version tag
- Software versions and code reproducible
- For full reproducibility, specify version revision when running the pipeline

nextflow run nf-core/chipseq -r 1.0

- Conclusion

- Use nf-core/chipseq to prepare your data if you want:
 - To not have to remember every parameter for every tool
 - Extreme reproducibility
 - Ability to run on virtually any environment
- Now running for all ChIPseq projects at NGI-Stockholm

nf-core/ to chipseq

Conclusion

Phil Ewels

- phil.ewels@scilifelab.se
- ewels
- tallphil

Acknowledgements

Chuan Wang

Jakub Westholm

Rickard Hammarén

Max Käller

Denis Moreno

NGI Stockholm Genomics Applications Development Group

https://nf-co.re

support@ngisweden.se
https://opensource.scilifelab.se

